BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37428784)

  • 1. The role of photobehaviour in sponge larval dispersal and settlement.
    Whalan S
    PLoS One; 2023; 18(7):e0287989. PubMed ID: 37428784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larval settlement: the role of surface topography for sessile coral reef invertebrates.
    Whalan S; Wahab MA; Sprungala S; Poole AJ; de Nys R
    PLoS One; 2015; 10(2):e0117675. PubMed ID: 25671562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and behavioural evidence that interdependent photo - and chemosensory systems regulate larval settlement in a marine sponge.
    Say TE; Degnan SM
    Mol Ecol; 2020 Jan; 29(2):247-261. PubMed ID: 31791111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges.
    Whalan S; Webster NS; Negri AP
    PLoS One; 2012; 7(1):e30386. PubMed ID: 22295083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval behaviours and their contribution to the distribution of the intertidal coral reef sponge Carteriospongia foliascens.
    Abdul Wahab MA; de Nys R; Webster N; Whalan S
    PLoS One; 2014; 9(5):e98181. PubMed ID: 24853091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are larvae of demersal fishes plankton or nekton?
    Leis JM
    Adv Mar Biol; 2006; 51():57-141. PubMed ID: 16905426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oyster larvae settle in response to habitat-associated underwater sounds.
    Lillis A; Eggleston DB; Bohnenstiehl DR
    PLoS One; 2013; 8(10):e79337. PubMed ID: 24205381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral sensitivity in a sponge larva.
    Leys SP; Cronin TW; Degnan BM; Marshall JN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):199-202. PubMed ID: 11976887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean.
    Whalan S; Webster NS
    Sci Rep; 2014 Feb; 4():4072. PubMed ID: 24518965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component.
    Mariani S; Uriz MJ; Turon X; Alcoverro T
    Oecologia; 2006 Aug; 149(1):174-84. PubMed ID: 16710659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sediment resuspension on the larval stage of the model sponge Carteriospongia foliascens.
    Abdul Wahab MA; Maldonado M; Luter HM; Jones R; Ricardo G
    Sci Total Environ; 2019 Dec; 695():133837. PubMed ID: 31422324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength-specific negatively phototactic responses of the burrowing mayfly larvae Ephoron virgo.
    Mészáros Á; Kriska G; Egri Á
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38699809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix.
    Roth MS; Fan TY; Deheyn DD
    PLoS One; 2013; 8(3):e59476. PubMed ID: 23544072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interocean patterns in shallow water sponge assemblage structure and function.
    Bell JJ; McGrath E; Kandler NM; Marlow J; Beepat SS; Bachtiar R; Shaffer MR; Mortimer C; Micaroni V; Mobilia V; Rovellini A; Harris B; Farnham E; Strano F; Carballo JL
    Biol Rev Camb Philos Soc; 2020 Dec; 95(6):1720-1758. PubMed ID: 32812691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytological basis of photoresponsive behavior in a sponge larva.
    Leys SP; Degnan BM
    Biol Bull; 2001 Dec; 201(3):323-38. PubMed ID: 11751245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New sponge species from hydrothermal vent and cold seep sites off New Zealand.
    Kelly M; Rowden AA
    Zootaxa; 2019 Apr; 4576(3):zootaxa.4576.3.1. PubMed ID: 31715746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustacean larvae.
    Queiroga H; Blanton J
    Adv Mar Biol; 2005; 47():107-214. PubMed ID: 15596167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-settlement behavior in larval bryozoans: the roles of larval age and size.
    Burgess SC; Hart SP; Marshall DJ
    Biol Bull; 2009 Jun; 216(3):344-54. PubMed ID: 19556599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting effects of heavy metals and hydrocarbons on larval settlement and juvenile survival in sponges.
    Cebrian E; Uriz MJ
    Aquat Toxicol; 2007 Feb; 81(2):137-43. PubMed ID: 17196674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.