These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37428788)

  • 1. Development and validation of an environmental DNA assay to detect federally threatened groundwater salamanders in central Texas.
    Adcock ZC; Adcock ME; Forstner MRJ
    PLoS One; 2023; 18(7):e0288282. PubMed ID: 37428788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting surface abundance of federally threatened Jollyville Plateau Salamanders (
    Adcock ZC; MacLaren AR; Jones RM; Villamizar-Gomez A; Wall AE; White Iv K; Forstner MRJ
    PeerJ; 2022; 10():e13359. PubMed ID: 35529492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation.
    Walker DM; Leys JE; Dunham KE; Oliver JC; Schiller EE; Stephenson KS; Kimrey JT; Wooten J; Rogers MW
    Mol Ecol Resour; 2017 Nov; 17(6):1223-1230. PubMed ID: 28296353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.
    Goldberg CS; Pilliod DS; Arkle RS; Waits LP
    PLoS One; 2011; 6(7):e22746. PubMed ID: 21818382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan.
    Saeed M; Rais M; Akram A; Williams MR; Kellner KF; Hashsham SA; Davis DR
    Sci Rep; 2022 Apr; 12(1):5624. PubMed ID: 35379841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.
    Katano I; Harada K; Doi H; Souma R; Minamoto T
    PLoS One; 2017; 12(5):e0176541. PubMed ID: 28520733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon.
    Quilumbaquin W; Carrera-Gonzalez A; Van der Heyden C; Ortega-Andrade HM
    PeerJ; 2023; 11():e15455. PubMed ID: 37456876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of Environmental DNA (eDNA) to Detect Kirtland's Snake (
    Ratsch R; Kingsbury BA; Jordan MA
    Animals (Basel); 2020 Jun; 10(6):. PubMed ID: 32575432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient environmental DNA detection method for rare species: a case study of a small salamander (Hynobius boulengeri).
    Sakata MK; Takeshita D; Nishizawa R; Sato T; Minamoto T
    Anal Sci; 2023 May; 39(5):721-728. PubMed ID: 36859696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing detection of eDNA from a stream-dwelling amphibian.
    Pilliod DS; Goldberg CS; Arkle RS; Waits LP
    Mol Ecol Resour; 2014 Jan; 14(1):109-16. PubMed ID: 24034561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent visual encounter sampling validates eDNA selectivity and sensitivity for the endangered wood turtle (Glyptemys insculpta).
    Akre TS; Parker LD; Ruther E; Maldonado JE; Lemmon L; McInerney NR
    PLoS One; 2019; 14(4):e0215586. PubMed ID: 31017960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traditional trapping methods outperform eDNA sampling for introduced semi-aquatic snakes.
    Rose JP; Wademan C; Weir S; Wood JS; Todd BD
    PLoS One; 2019; 14(7):e0219244. PubMed ID: 31265475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taking eDNA underground: Factors affecting eDNA detection of subterranean fauna in groundwater.
    van der Heyde M; White NE; Nevill P; Austin AD; Stevens N; Jones M; Guzik MT
    Mol Ecol Resour; 2023 Aug; 23(6):1257-1274. PubMed ID: 36999608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a quantitative polymerase chain reaction assay and environmental DNA sampling methods for Giant Gartersnake (Thamnophis gigas).
    Schumer G; Hansen EC; Anders PJ; Blankenship SM
    PLoS One; 2019; 14(9):e0222493. PubMed ID: 31525228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating environmental DNA detection of a rare fish in turbid water using field and experimental approaches.
    Holmes AE; Baerwald MR; Rodzen J; Schreier BM; Mahardja B; Finger AJ
    PeerJ; 2024; 12():e16453. PubMed ID: 38188170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms.
    de Souza LS; Godwin JC; Renshaw MA; Larson E
    PLoS One; 2016; 11(10):e0165273. PubMed ID: 27776150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental RNA can distinguish life stages in amphibian populations.
    Parsley MB; Goldberg CS
    Mol Ecol Resour; 2024 May; 24(4):e13857. PubMed ID: 37593778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring.
    Chen Y; Tournayre O; Tian H; Lougheed SC
    PeerJ; 2023; 11():e14679. PubMed ID: 36710869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using eDNA sampling for species-specific fish detection in tropical oceanic samples: limitations and recommendations for future use.
    Gonzalez Colmenares GM; Gonzalez Montes AJ; Harms-Tuohy CA; Schizas NV
    PeerJ; 2023; 11():e14810. PubMed ID: 36751629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).
    Schultz MT; Lance RF
    PLoS One; 2015; 10(10):e0141503. PubMed ID: 26509674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.