These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 37428801)
1. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Gastellu T; Le Bizec B; Rivière G Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2023 Aug; 40(8):951-970. PubMed ID: 37428801 [TBL] [Abstract][Full Text] [Related]
2. Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Zare Jeddi M; Hopf NB; Viegas S; Price AB; Paini A; van Thriel C; Benfenati E; Ndaw S; Bessems J; Behnisch PA; Leng G; Duca RC; Verhagen H; Cubadda F; Brennan L; Ali I; David A; Mustieles V; Fernandez MF; Louro H; Pasanen-Kase R Environ Int; 2021 Jan; 146():106257. PubMed ID: 33395925 [TBL] [Abstract][Full Text] [Related]
3. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment. Pletz J; Blakeman S; Paini A; Parissis N; Worth A; Andersson AM; Frederiksen H; Sakhi AK; Thomsen C; Bopp SK Environ Int; 2020 Oct; 143():105978. PubMed ID: 32763630 [TBL] [Abstract][Full Text] [Related]
4. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Louro H; Heinälä M; Bessems J; Buekers J; Vermeire T; Woutersen M; van Engelen J; Borges T; Rousselle C; Ougier E; Alvito P; Martins C; Assunção R; Silva MJ; Pronk A; Schaddelee-Scholten B; Del Carmen Gonzalez M; de Alba M; Castaño A; Viegas S; Humar-Juric T; Kononenko L; Lampen A; Vinggaard AM; Schoeters G; Kolossa-Gehring M; Santonen T Int J Hyg Environ Health; 2019 Jun; 222(5):727-737. PubMed ID: 31176761 [TBL] [Abstract][Full Text] [Related]
5. Mixture risk assessment and human biomonitoring: Lessons learnt from HBM4EU. Luijten M; Vlaanderen J; Kortenkamp A; Antignac JP; Barouki R; Bil W; van den Brand A; den Braver-Sewradj S; van Klaveren J; Mengelers M; Ottenbros I; Rantakokko P; Kolossa-Gehring M; Lebret E Int J Hyg Environ Health; 2023 Apr; 249():114135. PubMed ID: 36758443 [TBL] [Abstract][Full Text] [Related]
6. Application of human biomonitoring (HBM) of chemical exposure in the characterisation of health risks under REACH. Boogaard PJ; Aylward LL; Hays SM Int J Hyg Environ Health; 2012 Feb; 215(2):238-41. PubMed ID: 22177527 [TBL] [Abstract][Full Text] [Related]
7. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative. Sarigiannis DA; Karakitsios S; Dominguez-Romero E; Papadaki K; Brochot C; Kumar V; Schuhmacher M; Sy M; Mielke H; Greiner M; Mengelers M; Scheringer M Environ Res; 2019 May; 172():216-230. PubMed ID: 30818231 [TBL] [Abstract][Full Text] [Related]
8. Prioritization of mixtures of neurotoxic chemicals for biomonitoring using high-throughput toxicokinetics and mixture toxicity modeling. Braun G; Escher BI Environ Int; 2023 Jan; 171():107680. PubMed ID: 36502700 [TBL] [Abstract][Full Text] [Related]
9. Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics. Jeong SH; Jang JH; Lee YB Environ Pollut; 2022 Nov; 312():120041. PubMed ID: 36030954 [TBL] [Abstract][Full Text] [Related]
10. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. Reale E; Zare Jeddi M; Paini A; Connolly A; Duca R; Cubadda F; Benfenati E; Bessems J; S Galea K; Dirven H; Santonen T; M Koch H; Jones K; Sams C; Viegas S; Kyriaki M; Campisi L; David A; Antignac JP; B Hopf N Environ Int; 2024 Feb; 184():108474. PubMed ID: 38350256 [TBL] [Abstract][Full Text] [Related]
11. Lead exposure estimation through a physiologically based toxicokinetic model using human biomonitoring data and comparison with scenario-based exposure assessment: A case study in Korean adults. Kwon YK; Kim MJ; Choi YJ; Yoon SH; Oh KS; Shin YM Food Chem Toxicol; 2024 Sep; 191():114829. PubMed ID: 38955257 [TBL] [Abstract][Full Text] [Related]
12. Physiologically based toxicokinetic modelling of Tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes. Ding J; He W; Sha W; Shan G; Zhu L; Zhu L; Feng J Ecotoxicol Environ Saf; 2024 Feb; 271():115976. PubMed ID: 38232524 [TBL] [Abstract][Full Text] [Related]
13. Human biomonitoring as a pragmatic tool to support health risk management of chemicals--examples under the EU REACH programme. Boogaard PJ; Hays SM; Aylward LL Regul Toxicol Pharmacol; 2011 Feb; 59(1):125-32. PubMed ID: 20933039 [TBL] [Abstract][Full Text] [Related]
14. Human risk assessment through development and application of a physiologically based toxicokinetic model for 4-tert-octylphenol. Jang JH; Jeong SH Environ Pollut; 2024 Nov; 360():124613. PubMed ID: 39053795 [TBL] [Abstract][Full Text] [Related]
15. A review of Human Biomonitoring studies of trace elements in Pakistan. Waseem A; Arshad J Chemosphere; 2016 Nov; 163():153-176. PubMed ID: 27529382 [TBL] [Abstract][Full Text] [Related]
16. Human risk associated with exposure to mixtures of antiandrogenic chemicals evaluated using in vitro hazard and human biomonitoring data. Ma Y; Taxvig C; Rodríguez-Carrillo A; Mustieles V; Reiber L; Kiesow A; Löbl NM; Fernández MF; Hansen TVA; Valente MJ; Kolossa-Gehring M; David M; Vinggaard AM Environ Int; 2023 Mar; 173():107815. PubMed ID: 36822008 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals. Olie JD; Bessems JG; Clewell HJ; Meulenbelt J; Hunault CC Chemosphere; 2015 Aug; 132():47-55. PubMed ID: 25794648 [TBL] [Abstract][Full Text] [Related]
18. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results. Jongeneelen FJ; Berge WF Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005 [TBL] [Abstract][Full Text] [Related]
19. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data. Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831 [TBL] [Abstract][Full Text] [Related]
20. Physiologically based toxicokinetic models and their application in human exposure and internal dose assessment. Kim D; Nylander-French LA EXS; 2009; 99():37-55. PubMed ID: 19157057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]