BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37428810)

  • 1. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection.
    Larcombe DE; Bohovych IM; Pradhan A; Ma Q; Hickey E; Leaves I; Cameron G; Avelar GM; de Assis LJ; Childers DS; Bain JM; Lagree K; Mitchell AP; Netea MG; Erwig LP; Gow NAR; Brown AJP
    PLoS Pathog; 2023 Jul; 19(7):e1011505. PubMed ID: 37428810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress adaptation in a pathogenic fungus.
    Brown AJ; Budge S; Kaloriti D; Tillmann A; Jacobsen MD; Yin Z; Ene IV; Bohovych I; Sandai D; Kastora S; Potrykus J; Ballou ER; Childers DS; Shahana S; Leach MD
    J Exp Biol; 2014 Jan; 217(Pt 1):144-55. PubMed ID: 24353214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron.
    Pradhan A; Herrero-de-Dios C; Belmonte R; Budge S; Lopez Garcia A; Kolmogorova A; Lee KK; Martin BD; Ribeiro A; Bebes A; Yuecel R; Gow NAR; Munro CA; MacCallum DM; Quinn J; Brown AJP
    PLoS Pathog; 2017 May; 13(5):e1006405. PubMed ID: 28542620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose promotes stress resistance in the fungal pathogen Candida albicans.
    Rodaki A; Bohovych IM; Enjalbert B; Young T; Odds FC; Gow NA; Brown AJ
    Mol Biol Cell; 2009 Nov; 20(22):4845-55. PubMed ID: 19759180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.
    Kaloriti D; Jacobsen M; Yin Z; Patterson M; Tillmann A; Smith DA; Cook E; You T; Grimm MJ; Bohovych I; Grebogi C; Segal BH; Gow NA; Haynes K; Quinn J; Brown AJ
    mBio; 2014 Jul; 5(4):e01334-14. PubMed ID: 25028425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thoughts on the evolution of Core Environmental Responses in yeasts.
    Brown AJP; Larcombe DE; Pradhan A
    Fungal Biol; 2020 May; 124(5):475-481. PubMed ID: 32389310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Variation in Clinical Isolates of Candida albicans Modulates Neutrophil Responses.
    Shankar M; Lo TL; Traven A
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress.
    Miramón P; Dunker C; Windecker H; Bohovych IM; Brown AJ; Kurzai O; Hube B
    PLoS One; 2012; 7(12):e52850. PubMed ID: 23285201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida albicans Ras1 Inactivation Increases Resistance to Phagosomal Killing by Human Neutrophils.
    Salvatori O; Pathirana RU; Kay JG; Edgerton M
    Infect Immun; 2018 Dec; 86(12):. PubMed ID: 30249746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic diversity of stress signalling pathways in fungi.
    Nikolaou E; Agrafioti I; Stumpf M; Quinn J; Stansfield I; Brown AJ
    BMC Evol Biol; 2009 Feb; 9():44. PubMed ID: 19232129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence.
    Liu NN; Uppuluri P; Broggi A; Besold A; Ryman K; Kambara H; Solis N; Lorenz V; Qi W; Acosta-Zaldívar M; Emami SN; Bao B; An D; Bonilla FA; Sola-Visner M; Filler SG; Luo HR; Engström Y; Ljungdahl PO; Culotta VC; Zanoni I; Lopez-Ribot JL; Köhler JR
    PLoS Pathog; 2018 Jul; 14(7):e1007076. PubMed ID: 30059535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans.
    Enjalbert B; MacCallum DM; Odds FC; Brown AJ
    Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.
    Sandai D; Yin Z; Selway L; Stead D; Walker J; Leach MD; Bohovych I; Ene IV; Kastora S; Budge S; Munro CA; Odds FC; Gow NA; Brown AJ
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.
    Mayer FL; Wilson D; Jacobsen ID; Miramón P; Slesiona S; Bohovych IM; Brown AJ; Hube B
    PLoS One; 2012; 7(6):e38584. PubMed ID: 22685587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling.
    Pradhan A; Avelar GM; Bain JM; Childers DS; Larcombe DE; Netea MG; Shekhova E; Munro CA; Brown GD; Erwig LP; Gow NAR; Brown AJP
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans.
    Nicholls S; Straffon M; Enjalbert B; Nantel A; Macaskill S; Whiteway M; Brown AJ
    Eukaryot Cell; 2004 Oct; 3(5):1111-23. PubMed ID: 15470239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc Cluster Transcription Factors Alter Virulence in Candida albicans.
    Issi L; Farrer RA; Pastor K; Landry B; Delorey T; Bell GW; Thompson DA; Cuomo CA; Rao RP
    Genetics; 2017 Feb; 205(2):559-576. PubMed ID: 27932543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative Model of Oxidative Stress Adaptation in the Fungal Pathogen Candida albicans.
    Komalapriya C; Kaloriti D; Tillmann AT; Yin Z; Herrero-de-Dios C; Jacobsen MD; Belmonte RC; Cameron G; Haynes K; Grebogi C; de Moura AP; Gow NA; Thiel M; Quinn J; Brown AJ; Romano MC
    PLoS One; 2015; 10(9):e0137750. PubMed ID: 26368573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways.
    Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC
    FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.