BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37428875)

  • 21. High resolution steady-state measurements of thermal contact resistance across thermal interface material junctions.
    Warzoha RJ; Donovan BF
    Rev Sci Instrum; 2017 Sep; 88(9):094901. PubMed ID: 28964213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Giant Thermal Transport Tuning at a Metal/Ferroelectric Interface.
    Zang Y; Di C; Geng Z; Yan X; Ji D; Zheng N; Jiang X; Fu H; Wang J; Guo W; Sun H; Han L; Zhou Y; Gu Z; Kong D; Aramberri H; Cazorla C; Íñiguez J; Rurali R; Chen L; Zhou J; Wu D; Lu M; Nie Y; Chen Y; Pan X
    Adv Mater; 2022 Jan; 34(3):e2105778. PubMed ID: 34676925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials.
    Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I
    Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction.
    Guo C; Li Y; Xu J; Zhang Q; Wu K; Fu Q
    Mater Horiz; 2022 Jun; 9(6):1690-1699. PubMed ID: 35393993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesion-Induced Instability Regulates Contact Mechanics of Soft Thin Elastic Films.
    Yu S; Jiang H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21994-21999. PubMed ID: 33940793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data-Driven Design of Transparent Thermal Insulating Nanoscale Layered Oxides.
    Wu YJ; Xu Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Design of Eco-Friendly Super Elastomer Materials With Optimized Hard Segments Micro-Structure: Toward Next-Generation High-Performance Tires.
    Qin X; Wang J; Han B; Wang B; Mao L; Zhang L
    Front Chem; 2018; 6():240. PubMed ID: 30079334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminar Metal Foam: A Soft and Highly Thermally Conductive Thermal Interface Material with a Reliable Joint for Semiconductor Packaging.
    Liu P; Luo Y; Liu J; Chiang SW; Wu D; Dai W; Kang F; Lin W; Wong CP; Yang C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15791-15801. PubMed ID: 33755413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Staples for Tough and Stretchable Adhesion in Integrated Soft Materials.
    Chen B; Yang J; Bai R; Suo Z
    Adv Healthc Mater; 2019 Oct; 8(19):e1900810. PubMed ID: 31368256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Energy Harvesting Performances Silicone Elastomer via Filling Soft Dielectric with Stretching Deformability.
    Jiang Y; Liu X; Wang Y; Tian C; Wu D; Ning N; Tian M
    Adv Mater; 2023 Jun; 35(22):e2300246. PubMed ID: 36932852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Integrated Approach to Design and Develop High-Performance Polymer-Composite Thermal Interface Material.
    Akhtar SS
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33800734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials.
    Ji C; Wang Y; Ye Z; Tan L; Mao D; Zhao W; Zeng X; Yan C; Sun R; Kang DJ; Xu J; Wong CP
    ACS Appl Mater Interfaces; 2020 May; 12(21):24298-24307. PubMed ID: 32348118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management.
    Cui Y; Qin Z; Wu H; Li M; Hu Y
    Nat Commun; 2021 Feb; 12(1):1284. PubMed ID: 33627644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of alloying elements on diamond/Cu interface properties based on first-principles calculations.
    Han J; Yang X; Ren Y; Li Y; Li Y; Li Z
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36538826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.