These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37428924)

  • 1. Elevated atmospheric CO
    Yan Q; Li X; Kemp DB; Guo J; Zhang Z; Hu Y
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2301018120. PubMed ID: 37428924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impacts of Persian Gulf water and ocean-atmosphere interactions on tropical cyclone intensification in the Arabian Sea.
    Pourkerman M; Marriner N; Amjadi S; Lak R; Hamzeh M; Mohammadpor G; Lahijani H; Tavakoli M; Morhange C; Shah-Hosseini M
    Mar Pollut Bull; 2023 Mar; 188():114553. PubMed ID: 36701976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming.
    Chu JE; Lee SS; Timmermann A; Wengel C; Stuecker MF; Yamaguchi R
    Sci Adv; 2020 Dec; 6(51):. PubMed ID: 33328238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods.
    Ullmann CV; Boyle R; Duarte LV; Hesselbo SP; Kasemann SA; Klein T; Lenton TM; Piazza V; Aberhan M
    Sci Rep; 2020 Apr; 10(1):6549. PubMed ID: 32300235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. δ
    Ruebsam W; Reolid M; Schwark L
    Sci Rep; 2020 Jan; 10(1):117. PubMed ID: 31924807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness.
    Sun Y; Zhong Z; Li T; Yi L; Hu Y; Wan H; Chen H; Liao Q; Ma C; Li Q
    Sci Rep; 2017 Aug; 7(1):8154. PubMed ID: 28811627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a global synthetic tropical cyclone hazard dataset using STORM.
    Bloemendaal N; Haigh ID; de Moel H; Muis S; Haarsma RJ; Aerts JCJH
    Sci Data; 2020 Feb; 7(1):40. PubMed ID: 32029746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing tropical cyclone intensity in the western North Pacific partly driven by warming Tibetan Plateau.
    Xu J; Zhao P; Chan JCL; Shi M; Yang C; Zhao S; Xu Y; Chen J; Du L; Wu J; Ye J; Xing R; Wang H; Liu L
    Nat Commun; 2024 Jan; 15(1):310. PubMed ID: 38182595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms and drivers of belemnite body-size dynamics across the Pliensbachian-Toarcian crisis.
    Rita P; Nätscher P; Duarte LV; Weis R; De Baets K
    R Soc Open Sci; 2019 Dec; 6(12):190494. PubMed ID: 31903197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of tropical cyclone genesis regions during the Cenozoic era.
    Yan Q; Korty R; Zhang Z; Wang H
    Nat Commun; 2019 Jul; 10(1):3076. PubMed ID: 31300651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rising future tropical cyclone-induced extreme winds in the Mekong River Basin.
    Chen A; Emanuel KA; Chen D; Lin C; Zhang F
    Sci Bull (Beijing); 2020 Mar; 65(5):419-424. PubMed ID: 36659233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocean warming affected faunal dynamics of benthic invertebrate assemblages across the Toarcian Oceanic Anoxic Event in the Iberian Basin (Spain).
    Piazza V; Ullmann CV; Aberhan M
    PLoS One; 2020; 15(12):e0242331. PubMed ID: 33296368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected limitation of tropical cyclone genesis by subsurface tropical central-north Pacific during El Niño.
    Gao C; Zhou L; Wang C; Lin II; Murtugudde R
    Nat Commun; 2022 Dec; 13(1):7746. PubMed ID: 36517474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocean barrier layers' effect on tropical cyclone intensification.
    Balaguru K; Chang P; Saravanan R; Leung LR; Xu Z; Li M; Hsieh JS
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14343-7. PubMed ID: 22891298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.
    Huang P; Lin II; Chou C; Huang RH
    Nat Commun; 2015 May; 6():7188. PubMed ID: 25982028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period.
    Yan Q; Wei T; Korty RL; Kossin JP; Zhang Z; Wang H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):12963-12967. PubMed ID: 27799528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for local carbon-cycle perturbations superimposed on the Toarcian carbon isotope excursion.
    Wang Y; Ossa Ossa F; Wille M; Schurr S; Saussele ME; Schmid-Röhl A; Schoenberg R
    Geobiology; 2020 Nov; 18(6):682-709. PubMed ID: 32783292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physically based storm transposition of four Atlantic tropical cyclones.
    Mure-Ravaud M; Dib A; Kavvas ML; Yegorova E; Kanney J
    Sci Total Environ; 2019 May; 666():252-273. PubMed ID: 30798236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equatorial waves as useful precursors to tropical cyclone occurrence and intensification.
    Feng X; Yang GY; Hodges KI; Methven J
    Nat Commun; 2023 Jan; 14(1):511. PubMed ID: 36720876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global increase in major tropical cyclone exceedance probability over the past four decades.
    Kossin JP; Knapp KR; Olander TL; Velden CS
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11975-11980. PubMed ID: 32424081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.