BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37429078)

  • 1. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays.
    Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R
    J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
    Islam MS; Chen X
    Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels.
    Ebrahimi S; Tahmasebipour M
    Arch Razi Inst; 2022 Apr; 77(2):647-660. PubMed ID: 36284940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study.
    Uddin MR; Sarowar MT; Chen X
    Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study.
    Altay R; Yapici MK; Koşar A
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAIF: Label-Free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing Microfluidic Chip.
    Abdulla A; Ding X
    Methods Mol Biol; 2023; 2679():207-218. PubMed ID: 37300618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation.
    Khan M; Chen X
    Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity.
    Omrani V; Targhi MZ; Rahbarizadeh F; Nosrati R
    Sci Rep; 2023 Feb; 13(1):3213. PubMed ID: 36828913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells.
    Cheng Y; Zhang S; Qin L; Zhao J; Song H; Yuan Y; Sun J; Tian F; Liu C
    Anal Chem; 2023 Feb; 95(6):3468-3475. PubMed ID: 36725367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods.
    Huang D; Xiang N
    Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of cancer cells from white blood cells by pinched flow fractionation.
    Pødenphant M; Ashley N; Koprowska K; Mir KU; Zalkovskij M; Bilenberg B; Bodmer W; Kristensen A; Marie R
    Lab Chip; 2015 Dec; 15(24):4598-606. PubMed ID: 26510401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics.
    Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L
    Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.