These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37429404)
1. Life cycle assessment of sequential microbial-based anaerobic-aerobic reactor technology developed onsite for treating textile effluent. Samuchiwal S; Naaz F; Kumar P; Ahammad SZ; Malik A Environ Res; 2023 Oct; 234():116545. PubMed ID: 37429404 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Influence of hydraulic retention time in a two-phase upflow anaerobic sludge blanket reactor treating textile dyeing effluent using sago effluent as the co-substrate. Senthilkumar M; Gnanapragasam G; Arutchelvan V; Nagarajan S Environ Sci Pollut Res Int; 2011 May; 18(4):649-54. PubMed ID: 21063797 [TBL] [Abstract][Full Text] [Related]
4. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent. Köchling T; Ferraz AD; Florencio L; Kato MT; Gavazza S Environ Technol; 2017 Mar; 38(6):687-693. PubMed ID: 27384498 [TBL] [Abstract][Full Text] [Related]
5. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency. Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384 [TBL] [Abstract][Full Text] [Related]
6. Development of granular sludge for textile wastewater treatment. Muda K; Aris A; Salim MR; Ibrahim Z; Yahya A; van Loosdrecht MC; Ahmad A; Nawahwi MZ Water Res; 2010 Aug; 44(15):4341-50. PubMed ID: 20580402 [TBL] [Abstract][Full Text] [Related]
7. Treatment of textile dyes in two-phase and single-phase anaerobic bio-treatment systems. Bhattacharyya D; Singh KS Water Sci Technol; 2008; 57(6):863-8. PubMed ID: 18413946 [TBL] [Abstract][Full Text] [Related]
8. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes. De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597 [TBL] [Abstract][Full Text] [Related]
9. Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. Samuchiwal S; Gola D; Malik A J Hazard Mater; 2021 Jan; 402():123835. PubMed ID: 33254813 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Somasiri W; Li XF; Ruan WQ; Jian C Bioresour Technol; 2008 Jun; 99(9):3692-9. PubMed ID: 17719776 [TBL] [Abstract][Full Text] [Related]
11. Sustainable biological system for the removal of high strength ammoniacal nitrogen and organic pollutants in poultry waste processing industrial effluent. Mohan T; Sheik Farid NS; K V S; A S; K R J Air Waste Manag Assoc; 2020 Dec; 70(12):1236-1243. PubMed ID: 32069193 [TBL] [Abstract][Full Text] [Related]
12. Colour removal from textile waste water using bioculture in continous mode. Meenambal T; Devi D; Begum M J Environ Sci Eng; 2006 Oct; 48(4):247-52. PubMed ID: 18179118 [TBL] [Abstract][Full Text] [Related]
13. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Paździor K; Klepacz-Smółka A; Ledakowicz S; Sójka-Ledakowicz J; Mrozińska Z; Zyłła R Chemosphere; 2009 Apr; 75(2):250-5. PubMed ID: 19155044 [TBL] [Abstract][Full Text] [Related]
14. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. Haddad M; Abid S; Hamdi M; Bouallagui H J Environ Manage; 2018 Oct; 223():936-946. PubMed ID: 30007889 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents. Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851 [TBL] [Abstract][Full Text] [Related]
16. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater. Franca RDG; Ortigueira J; Pinheiro HM; Lourenço ND Water Sci Technol; 2017 Sep; 76(5-6):1188-1195. PubMed ID: 28876260 [TBL] [Abstract][Full Text] [Related]
17. An integrated process for the treatment of CETP wastewater using coagulation, anaerobic and aerobic process. Moosvi S; Madamwar D Bioresour Technol; 2007 Dec; 98(17):3384-92. PubMed ID: 17555957 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic-aerobic sewage treatment using the combination UASB-SBR activated sludge. Guimarães P; Melo HN; Cavalcanti PF; van Haandel AC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(11):2633-41. PubMed ID: 14533928 [TBL] [Abstract][Full Text] [Related]
19. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater. Abiri F; Fallah N; Bonakdarpour B Water Sci Technol; 2017 Mar; 75(5-6):1261-1269. PubMed ID: 28333043 [TBL] [Abstract][Full Text] [Related]
20. Scaling-up of a zero valent iron packed anaerobic reactor for textile dye wastewater treatment: a potential technology for on-site upgrading and rebuilding of traditional anaerobic wastewater treatment plant. Li Y; Zhang J; Zhang Y; Quan X Water Sci Technol; 2017 Aug; 76(3-4):823-831. PubMed ID: 28799929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]