These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37429865)

  • 1. nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes.
    Weber LM; Saha A; Datta A; Hansen KD; Hicks SC
    Nat Commun; 2023 Jul; 14(1):4059. PubMed ID: 37429865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOMDE: a scalable method for identifying spatially variable genes with self-organizing map.
    Hao M; Hua K; Zhang X
    Bioinformatics; 2021 Dec; 37(23):4392-4398. PubMed ID: 34165490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data.
    Pardo B; Spangler A; Weber LM; Page SC; Hicks SC; Jaffe AE; Martinowich K; Maynard KR; Collado-Torres L
    BMC Genomics; 2022 Jun; 23(1):434. PubMed ID: 35689177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NoVaTeST: identifying genes with location-dependent noise variance in spatial transcriptomics data.
    Abrar MA; Kaykobad M; Rahman MS; Samee MAH
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37285319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nearest Neighbor Gaussian Process for Quantitative Structure-Activity Relationships.
    DiFranzo A; Sheridan RP; Liaw A; Tudor M
    J Chem Inf Model; 2020 Oct; 60(10):4653-4663. PubMed ID: 33022174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On nearest-neighbor Gaussian process models for massive spatial data.
    Datta A; Banerjee S; Finley AO; Gelfand AE
    Wiley Interdiscip Rev Comput Stat; 2016; 8(5):162-171. PubMed ID: 29657666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SINFONIA: Scalable Identification of Spatially Variable Genes for Deciphering Spatial Domains.
    Jiang R; Li Z; Jia Y; Li S; Chen S
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nearest Neighbor Networks: clustering expression data based on gene neighborhoods.
    Huttenhower C; Flamholz AI; Landis JN; Sahi S; Myers CL; Olszewski KL; Hibbs MA; Siemers NO; Troyanskaya OG; Coller HA
    BMC Bioinformatics; 2007 Jul; 8():250. PubMed ID: 17626636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies.
    Baran Y; Doğan B
    Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cell-type-specific spatially variable genes accounting for excess zeros.
    Yu J; Luo X
    Bioinformatics; 2022 Sep; 38(17):4135-4144. PubMed ID: 35792822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential abundance testing on single-cell data using k-nearest neighbor graphs.
    Dann E; Henderson NC; Teichmann SA; Morgan MD; Marioni JC
    Nat Biotechnol; 2022 Feb; 40(2):245-253. PubMed ID: 34594043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. quantro: a data-driven approach to guide the choice of an appropriate normalization method.
    Hicks SC; Irizarry RA
    Genome Biol; 2015 Jun; 16(1):117. PubMed ID: 26040460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Predictions for Spatial Probit Linear Mixed Models Using Nearest Neighbor Gaussian Processes.
    Saha A; Datta A; Banerjee S
    J Data Sci; 2022; 20(4):533-544. PubMed ID: 37786782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating spatially variable gene detection methods for spatial transcriptomics data.
    Chen C; Kim HJ; Yang P
    Genome Biol; 2024 Jan; 25(1):18. PubMed ID: 38225676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network.
    Song T; Markham KK; Li Z; Muller KE; Greenham K; Kuang R
    Bioinformatics; 2022 Feb; 38(5):1344-1352. PubMed ID: 34864909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SpatialExperiment: infrastructure for spatially-resolved transcriptomics data in R using Bioconductor.
    Righelli D; Weber LM; Crowell HL; Pardo B; Collado-Torres L; Ghazanfar S; Lun ATL; Hicks SC; Risso D
    Bioinformatics; 2022 May; 38(11):3128-3131. PubMed ID: 35482478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.