BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37430053)

  • 1. Double Emulsion Flow Cytometry for Rapid Single Genome Detection.
    Cowell T; Han HS
    Methods Mol Biol; 2023; 2689():155-167. PubMed ID: 37430053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis.
    Cowell TW; Dobria A; Han HS
    ACS Appl Mater Interfaces; 2022 May; 14(18):20528-20537. PubMed ID: 35502700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Rapid generation of double-layer emulsion droplets based on microfluidic chip].
    Bai L; Yuan H; Tu R; Wang Q; Hua E
    Sheng Wu Gong Cheng Xue Bao; 2020 Jul; 36(7):1405-1413. PubMed ID: 32748598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery.
    Brower KK; Carswell-Crumpton C; Klemm S; Cruz B; Kim G; Calhoun SGK; Nichols L; Fordyce PM
    Lab Chip; 2020 Jun; 20(12):2062-2074. PubMed ID: 32417874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced CRISPR/Cas12a-based quantitative detection of nucleic acids using double emulsion droplets.
    Zhang Y; Liu H; Nakagawa Y; Nagasaka Y; Ding T; Tang SY; Yalikun Y; Goda K; Li M
    Biosens Bioelectron; 2024 Aug; 257():116339. PubMed ID: 38688231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions.
    Vallapurackal J; Stucki A; Liang AD; Klehr J; Dittrich PS; Ward TR
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202207328. PubMed ID: 36130864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS.
    Brower KK; Khariton M; Suzuki PH; Still C; Kim G; Calhoun SGK; Qi LS; Wang B; Fordyce PM
    Anal Chem; 2020 Oct; 92(19):13262-13270. PubMed ID: 32900183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability.
    Calhoun SGK; Brower KK; Suja VC; Kim G; Wang N; McCully AL; Kusumaatmaja H; Fuller GG; Fordyce PM
    Lab Chip; 2022 Jun; 22(12):2315-2330. PubMed ID: 35593127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alleviating Cell Lysate-Induced Inhibition to Enable RT-PCR from Single Cells in Picoliter-Volume Double Emulsion Droplets.
    Khariton M; McClune CJ; Brower KK; Klemm S; Sattely ES; Fordyce PM; Wang B
    Anal Chem; 2023 Jan; 95(2):935-945. PubMed ID: 36598332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics.
    Zhang H; Jenkins G; Zou Y; Zhu Z; Yang CJ
    Anal Chem; 2012 Apr; 84(8):3599-606. PubMed ID: 22455457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorting droplets into many outlets.
    Vyawahare S; Brundage M; Kijac A; Gutierrez M; de Geus M; Sinha S; Homyk A
    Lab Chip; 2021 Oct; 21(21):4262-4273. PubMed ID: 34617550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions.
    Zhang Y; Ho YP; Chiu YL; Chan HF; Chlebina B; Schuhmann T; You L; Leong KW
    Biomaterials; 2013 Jun; 34(19):4564-72. PubMed ID: 23522800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsion Designer Using Microfluidic Three-Dimensional Droplet Printing in Droplet.
    Chen L; Xiao Y; Wu Q; Yan X; Zhao P; Ruan J; Shan J; Chen D; Weitz DA; Ye F
    Small; 2021 Oct; 17(39):e2102579. PubMed ID: 34390183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Steady-State Enzyme Kinetics Measured in a Parallel Droplet Generation and Absorbance Detection Platform.
    Neun S; van Vliet L; Hollfelder F; Gielen F
    Anal Chem; 2022 Dec; 94(48):16701-16710. PubMed ID: 36417687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand-Powered Microfluidics for Parallel Droplet Digital Loop-Mediated Isothermal Amplification Assays.
    Yuan H; Tian J; Chao Y; Chien YS; Luo RH; Guo JY; Li S; Chou YJ; Shum HC; Chen CF
    ACS Sens; 2021 Aug; 6(8):2868-2874. PubMed ID: 34156242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonically-guided flow focusing generates precise emulsion droplets for high-throughput single cell analyses.
    Lagerman CE; López Acevedo SN; Fahad AS; Hailemariam AT; Madan B; DeKosky BJ
    J Biosci Bioeng; 2019 Aug; 128(2):226-233. PubMed ID: 30904454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Nanoinjection-Based Nanoliter Single-Cell Analysis.
    Yun J; Zheng X; Xu P; Zheng X; Xu J; Cao C; Fu Y; Xu B; Dai X; Wang Y; Liu H; Yi Q; Zhu Y; Wang J; Wang L; Dong Z; Huang L; Huang Y; Du W
    Small; 2020 Mar; 16(9):e1903739. PubMed ID: 31565845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.