BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37430057)

  • 1. Single Extracellular Vesicle Analysis Using Droplet Microfluidics.
    Reynolds DE; Galanis G; Wang Y; Ko J
    Methods Mol Biol; 2023; 2689():211-220. PubMed ID: 37430057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequencing-Based Protein Analysis of Single Extracellular Vesicles.
    Ko J; Wang Y; Sheng K; Weitz DA; Weissleder R
    ACS Nano; 2021 Mar; 15(3):5631-5638. PubMed ID: 33687214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Single Extracellular Vesicle Detection Using High Throughput Droplet Digital Enzyme-Linked Immunosorbent Assay.
    Yang Z; Atiyas Y; Shen H; Siedlik MJ; Wu J; Beard K; Fonar G; Dolle JP; Smith DH; Eberwine JH; Meaney DF; Issadore DA
    Nano Lett; 2022 Jun; 22(11):4315-4324. PubMed ID: 35588529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling DNA Cargos in Single Extracellular Vesicles via Hydrogel-Based Droplet Digital Multiple Displacement Amplification.
    Jiao Y; Gao L; Zhang T; He Z; Zheng SY; Liu W
    Anal Chem; 2024 Jan; 96(3):1293-1300. PubMed ID: 38189229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications.
    Meggiolaro A; Moccia V; Brun P; Pierno M; Mistura G; Zappulli V; Ferraro D
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a microfluidic droplet platform with an antibody-free magnetic-bead-based strategy for high through-put and efficient EVs isolation.
    Morani M; Taverna M; Krupova Z; Alexandre L; Defrenaix P; Mai TD
    Talanta; 2022 Nov; 249():123625. PubMed ID: 35688075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization.
    Chen M; Lin S; Zhou C; Cui D; Haick H; Tang N
    Adv Healthc Mater; 2023 Mar; 12(8):e2202437. PubMed ID: 36541411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform.
    Chen YS; Lai CP; Chen C; Lee GB
    Lab Chip; 2021 Apr; 21(8):1475-1483. PubMed ID: 33730143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags.
    Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y
    ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular vesicle-based therapeutics: Extracellular vesicles as therapeutic targets and agents.
    Takahashi Y; Takakura Y
    Pharmacol Ther; 2023 Feb; 242():108352. PubMed ID: 36702209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double Digital Assay for Single Extracellular Vesicle and Single Molecule Detection.
    Reynolds DE; Pan M; Yang J; Galanis G; Roh YH; Morales RT; Kumar SS; Heo SJ; Xu X; Guo W; Ko J
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303619. PubMed ID: 37802976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of PD-L1 Extracellular Vesicle Subpopulations Using DNA Computation Mediated Microfluidic Tandem Separation.
    Lu Y; Lin B; Liu W; Zhang J; Zhu L; Yang C; Song Y
    Small Methods; 2023 Sep; 7(9):e2300516. PubMed ID: 37236169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-vesicle imaging and co-localization analysis for tetraspanin profiling of individual extracellular vesicles.
    Han C; Kang H; Yi J; Kang M; Lee H; Kwon Y; Jung J; Lee J; Park J
    J Extracell Vesicles; 2021 Jan; 10(3):e12047. PubMed ID: 33456726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular vesicles as a potential source of tumor-derived DNA in advanced pancreatic cancer.
    Lapin M; Tjensvoll K; Nedrebø K; Taksdal E; Janssen H; Gilje B; Nordgård O
    PLoS One; 2023; 18(9):e0291623. PubMed ID: 37708210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in microfluidic extracellular vesicle analysis for cancer diagnostics.
    Cheng S; Li Y; Yan H; Wen Y; Zhou X; Friedman L; Zeng Y
    Lab Chip; 2021 Sep; 21(17):3219-3243. PubMed ID: 34352059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affinity-Based Enrichment of Extracellular Vesicles with Lipid Nanoprobes.
    Wan Y; Maurer M; Zheng SY
    Methods Mol Biol; 2022; 2394():185-197. PubMed ID: 35094329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Extracellular Vesicle Protein Analysis Using Immuno-Droplet Digital Polymerase Chain Reaction Amplification.
    Ko J; Wang Y; Carlson JCT; Marquard A; Gungabeesoon J; Charest A; Weitz D; Pittet MJ; Weissleder R
    Adv Biosyst; 2020 Dec; 4(12):e1900307. PubMed ID: 33274611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress of Extracellular Vesicle Engineering.
    Jia X; Tang J; Yao C; Yang D
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4430-4438. PubMed ID: 34455789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size Exclusion Chromatography for Separating Extracellular Vesicles from Conditioned Cell Culture Media.
    Jones MT; Manioci SW; Russell AE
    J Vis Exp; 2022 May; (183):. PubMed ID: 35635450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics.
    Yasui T; Paisrisarn P; Yanagida T; Konakade Y; Nakamura Y; Nagashima K; Musa M; Thiodorus IA; Takahashi H; Naganawa T; Shimada T; Kaji N; Ochiya T; Kawai T; Baba Y
    Biosens Bioelectron; 2021 Dec; 194():113589. PubMed ID: 34543824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.