BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 37430086)

  • 41. Gene silencing by systemic delivery of synthetic siRNAs in adult mice.
    Sørensen DR; Leirdal M; Sioud M
    J Mol Biol; 2003 Apr; 327(4):761-6. PubMed ID: 12654261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. siRNA applications in nanomedicine.
    Tokatlian T; Segura T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(3):305-15. PubMed ID: 20135697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simplified and versatile system for the simultaneous expression of multiple siRNAs in mammalian cells using Gibson DNA Assembly.
    Deng F; Chen X; Liao Z; Yan Z; Wang Z; Deng Y; Zhang Q; Zhang Z; Ye J; Qiao M; Li R; Denduluri S; Wang J; Wei Q; Li M; Geng N; Zhao L; Zhou G; Zhang P; Luu HH; Haydon RC; Reid RR; Yang T; He TC
    PLoS One; 2014; 9(11):e113064. PubMed ID: 25398142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-viral siRNA delivery to the lung.
    Thomas M; Lu JJ; Chen J; Klibanov AM
    Adv Drug Deliv Rev; 2007 Mar; 59(2-3):124-33. PubMed ID: 17459519
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short interfering RNA (siRNA) as a novel therapeutic.
    Pushparaj PN; Melendez AJ
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):504-10. PubMed ID: 16700886
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics.
    Cuciniello R; Filosa S; Crispi S
    J Exp Clin Cancer Res; 2021 Dec; 40(1):383. PubMed ID: 34863235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo.
    Aigner A
    J Biomed Biotechnol; 2006; 2006(4):71659. PubMed ID: 17057369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. siRNA Therapeutics in Ocular Diseases.
    Moreno-Montañés J; Bleau AM; Martínez T; Vargas B; González MV; Jiménez AI
    Methods Mol Biol; 2021; 2282():417-442. PubMed ID: 33928588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developing a Versatile Shotgun Cloning Strategy for Single-Vector-Based Multiplex Expression of Short Interfering RNAs (siRNAs) in Mammalian Cells.
    Wang X; Yuan C; Huang B; Fan J; Feng Y; Li AJ; Zhang B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Wu D; Chen X; Liu B; Wagstaff W; He F; Wu X; Luo H; Zhang J; Zhang M; Haydon RC; Luu HH; Lee MJ; Moriatis Wolf J; Huang A; He TC; Zeng Z
    ACS Synth Biol; 2019 Sep; 8(9):2092-2105. PubMed ID: 31465214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs.
    Wolfrum C; Shi S; Jayaprakash KN; Jayaraman M; Wang G; Pandey RK; Rajeev KG; Nakayama T; Charrise K; Ndungo EM; Zimmermann T; Koteliansky V; Manoharan M; Stoffel M
    Nat Biotechnol; 2007 Oct; 25(10):1149-57. PubMed ID: 17873866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy.
    Mirzaei S; Gholami MH; Ang HL; Hashemi F; Zarrabi A; Zabolian A; Hushmandi K; Delfi M; Khan H; Ashrafizadeh M; Sethi G; Kumar AP
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New short interfering RNA-based therapies for glomerulonephritis.
    Shimizu H; Fujita T
    Nat Rev Nephrol; 2011 May; 7(7):407-15. PubMed ID: 21610682
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs.
    Liu F; Wang C; Gao Y; Li X; Tian F; Zhang Y; Fu M; Li P; Wang Y; Wang F
    Mol Diagn Ther; 2018 Oct; 22(5):551-569. PubMed ID: 29926308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation, Determination of Activity, and Biodistribution of Cholesterol-Containing Nuclease-Resistant siRNAs In Vivo.
    Chernikov IV; Meschaninova MI; Chernolovskaya EL
    Methods Mol Biol; 2020; 2115():57-77. PubMed ID: 32006394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting.
    De Paula D; Bentley MV; Mahato RI
    RNA; 2007 Apr; 13(4):431-56. PubMed ID: 17329355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemical modification of siRNA.
    Deleavey GF; Watts JK; Damha MJ
    Curr Protoc Nucleic Acid Chem; 2009 Dec; Chapter 16():Unit 16.3. PubMed ID: 20013783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy.
    De Backer L; Cerrada A; Pérez-Gil J; De Smedt SC; Raemdonck K
    J Control Release; 2015 Dec; 220(Pt B):642-50. PubMed ID: 26363301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A plasmid-based system for expressing small interfering RNA libraries in mammalian cells.
    Kaykas A; Moon RT
    BMC Cell Biol; 2004 Apr; 5():16. PubMed ID: 15119963
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-internalization SELEX: method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells.
    Thiel WH; Thiel KW; Flenker KS; Bair T; Dupuy AJ; McNamara JO; Miller FJ; Giangrande PH
    Methods Mol Biol; 2015; 1218():187-99. PubMed ID: 25319652
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of siRNA payloads to target KRAS-mutant cancer.
    Yuan TL; Fellmann C; Lee CS; Ritchie CD; Thapar V; Lee LC; Hsu DJ; Grace D; Carver JO; Zuber J; Luo J; McCormick F; Lowe SW
    Cancer Discov; 2014 Oct; 4(10):1182-1197. PubMed ID: 25100204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.