BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37430341)

  • 1. Synthesis of Short Peptides with Perfluoroalkyl Side Chains and Evaluation of Their Cellular Uptake Efficiency.
    Kadota K; Mikami T; Kohata A; Morimoto J; Sando S; Aikawa K; Okazoe T
    Chembiochem; 2023 Nov; 24(21):e202300374. PubMed ID: 37430341
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Christensen MV; Kongstad KT; Sondergaard TE; Staerk D; Nielsen HM; Franzyk H; Wimmer R
    J Biomol NMR; 2019 Apr; 73(3-4):167-182. PubMed ID: 30887171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies.
    Abrigo NA; Dods KK; Makovsky CA; Lohan S; Mitra K; Newcomb KM; Le A; Hartman MCT
    ACS Chem Biol; 2023 Apr; 18(4):746-755. PubMed ID: 36920103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.
    Soleymani-Goloujeh M; Nokhodchi A; Niazi M; Najafi-Hajivar S; Shahbazi-Mojarrad J; Zarghami N; Zakeri-Milani P; Mohammadi A; Karimi M; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):91-103. PubMed ID: 29258339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide.
    Kato T; Kita Y; Iwanari K; Asano A; Oba M; Tanaka M; Doi M
    Bioorg Med Chem; 2021 May; 38():116111. PubMed ID: 33838611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell penetrating peptides: a comparative transport analysis for 474 sequence motifs.
    Ramaker K; Henkel M; Krause T; Röckendorf N; Frey A
    Drug Deliv; 2018 Nov; 25(1):928-937. PubMed ID: 29656676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide.
    Kanwar JR; Gibbons J; Verma AK; Kanwar RK
    Anticancer Drugs; 2012 Jun; 23(5):471-82. PubMed ID: 22241171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Newly synthesized peptide, Ara-27, exhibits significant improvement in cell-penetrating ability compared to conventional peptides.
    Min S; Kim K; Ku S; Park JY; Seo J; Roh S
    Biotechnol Prog; 2020 Sep; 36(5):e3014. PubMed ID: 32374475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity.
    Takada H; Tsuchiya K; Demizu Y
    Bioconjug Chem; 2022 Jul; 33(7):1311-1318. PubMed ID: 35737901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and cellular characterization of various nano-assemblies of cell penetrating peptide-epirubicin-polyglutamate conjugates for the enhancement of antitumor activity.
    Mohammadi S; Zakeri-Milani P; Golkar N; Farkhani SM; Shirani A; Shahbazi Mojarrad J; Nokhodchi A; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018 Dec; 46(8):1572-1585. PubMed ID: 28933182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of NickFects, a New Family of CPPs, by Solid-Phase Peptide Synthesis.
    Arukuusk P; Langel Ü
    Methods Mol Biol; 2020; 2103():239-247. PubMed ID: 31879930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy.
    Mo RH; Zaro JL; Shen WC
    Mol Pharm; 2012 Feb; 9(2):299-309. PubMed ID: 22171592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Penetrating Peptides: A Promising Tool for the Cellular Uptake of Macromolecular Drugs.
    Zhu P; Jin L
    Curr Protein Pept Sci; 2018; 19(2):211-220. PubMed ID: 28699510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KELM-CPPpred: Kernel Extreme Learning Machine Based Prediction Model for Cell-Penetrating Peptides.
    Pandey P; Patel V; George NV; Mallajosyula SS
    J Proteome Res; 2018 Sep; 17(9):3214-3222. PubMed ID: 30032609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Design of Cell-Penetrating Foldamers.
    Yokoo H; Misawa T; Demizu Y
    Chem Rec; 2020 Sep; 20(9):912-921. PubMed ID: 32463155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential uptake of L- versus D-amino acid cell-penetrating peptides in a cell type-dependent manner.
    Verdurmen WP; Bovee-Geurts PH; Wadhwani P; Ulrich AS; Hällbrink M; van Kuppevelt TH; Brock R
    Chem Biol; 2011 Aug; 18(8):1000-10. PubMed ID: 21867915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.
    Dissanayake S; Denny WA; Gamage S; Sarojini V
    J Control Release; 2017 Mar; 250():62-76. PubMed ID: 28167286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating peptides as delivery enhancers for vaccine.
    Jiang Y; Li M; Zhang Z; Gong T; Sun X
    Curr Pharm Biotechnol; 2014; 15(3):256-66. PubMed ID: 25142954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.