These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37430524)

  • 1. Evaluation of a Restoration Algorithm Applied to Clipped Tibial Acceleration Signals.
    Chan ZYS; Angel C; Thomson D; Ferber R; Tsang SMH; Cheung RTH
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimum Sampling Frequency for Accurate and Reliable Tibial Acceleration Measurements During Rearfoot Strike Running in the Field.
    Aubol KG; Milner CE
    J Appl Biomech; 2023 Jun; 39(3):193-198. PubMed ID: 37001866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of the Accelerometer Operating Range on Biomechanical Parameters: Stride Length, Velocity, and Peak Tibial Acceleration during Running.
    Mitschke C; Kiesewetter P; Milani TL
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29303986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foot contact identification using a single triaxial accelerometer during running.
    Aubol KG; Milner CE
    J Biomech; 2020 May; 105():109768. PubMed ID: 32299620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of running velocity on resultant tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D
    Sports Biomech; 2020 Dec; 19(6):750-760. PubMed ID: 30537920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tibial Acceleration Reliability and Minimal Detectable Difference During Overground and Treadmill Running.
    Aubol KG; Hawkins JL; Milner CE
    J Appl Biomech; 2020 Dec; 36(6):457-459. PubMed ID: 32781437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment.
    Garcia MC; Gust G; Bazett-Jones DM
    J Sci Med Sport; 2021 Nov; 24(11):1161-1165. PubMed ID: 33766445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibial Acceleration Measured from Wearable Sensors Is Associated with Loading Rates in Injured Runners.
    Tenforde AS; Hayano T; Jamison ST; Outerleys J; Davis IS
    PM R; 2020 Jul; 12(7):679-684. PubMed ID: 31671242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.
    Giandolini M; Horvais N; Rossi J; Millet GY; Samozino P; Morin JB
    J Biomech; 2016 Jun; 49(9):1765-1771. PubMed ID: 27087676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the peak tibial acceleration of running by music-based biofeedback: A quasi-randomized controlled trial.
    Van den Berghe P; Derie R; Bauwens P; Gerlo J; Segers V; Leman M; De Clercq D
    Scand J Med Sci Sports; 2022 Apr; 32(4):698-709. PubMed ID: 34982842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of angular motion and gravity to tibial acceleration.
    Lafortune MA; Hennig EM
    Med Sci Sports Exerc; 1991 Mar; 23(3):360-3. PubMed ID: 2020275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity and reliability of peak tibial accelerations as real-time measure of impact loading during over-ground rearfoot running at different speeds.
    Van den Berghe P; Six J; Gerlo J; Leman M; De Clercq D
    J Biomech; 2019 Mar; 86():238-242. PubMed ID: 30824234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based loading and stability.
    Schütte KH; Seerden S; Venter R; Vanwanseele B
    Gait Posture; 2018 Jan; 59():222-228. PubMed ID: 29080511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The measurement of tibial acceleration in runners-A review of the factors that can affect tibial acceleration during running and evidence-based guidelines for its use.
    Sheerin KR; Reid D; Besier TF
    Gait Posture; 2019 Jan; 67():12-24. PubMed ID: 30248663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional acceleration of the tibia during walking and running.
    Lafortune MA
    J Biomech; 1991; 24(10):877-86. PubMed ID: 1744146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.
    Alexander JP; Hopkinson TL; Wundersitz DW; Serpell BG; Mara JK; Ball NB
    J Strength Cond Res; 2016 Nov; 30(11):3007-3013. PubMed ID: 26937772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The one-week and six-month reliability and variability of three-dimensional tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D; Hume PA
    Sports Biomech; 2018 Nov; 17(4):531-540. PubMed ID: 29171352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.