BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37430605)

  • 1. Efficient Deep Learning Based Hybrid Model to Detect Obstructive Sleep Apnea.
    Hemrajani P; Dhaka VS; Rani G; Shukla P; Bavirisetti DP
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble of Deep Learning Models for Sleep Apnea Detection: An Experimental Study.
    Mukherjee D; Dhar K; Schwenker F; Sarkar R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis.
    Yue H; Li P; Li Y; Lin Y; Huang B; Sun L; Ma W; Fan X; Wen W; Lei W
    J Clin Sleep Med; 2023 Jun; 19(6):1017-1025. PubMed ID: 36734174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
    Mashrur FR; Islam MS; Saha DK; Islam SMR; Moni MA
    Comput Biol Med; 2021 Jul; 134():104532. PubMed ID: 34102402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram.
    Chang HY; Yeh CY; Lee CT; Lin CC
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Forecasts the Occurrence of Sleep Apnea from Single-Lead ECG.
    Bahrami M; Forouzanfar M
    Cardiovasc Eng Technol; 2022 Dec; 13(6):809-815. PubMed ID: 35301676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Detection of Obstructive Sleep Apnea Events Using a Deep CNN-LSTM Model.
    Zhang J; Tang Z; Gao J; Lin L; Liu Z; Wu H; Liu F; Yao R
    Comput Intell Neurosci; 2021; 2021():5594733. PubMed ID: 33859679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Different Subbands of ECG in Sleep Apnea Detection Evaluated Using Filter Bank Decomposition and a Convolutional Neural Network.
    Yeh CY; Chang HY; Hu JY; Lin CC
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online Obstructive Sleep Apnea Detection on Medical Wearable Sensors.
    Surrel G; Aminifar A; Rincon F; Murali S; Atienza D
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):762-773. PubMed ID: 29993894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FASSNet: fast apnea syndrome screening neural network based on single-lead electrocardiogram for wearable devices.
    Yu Y; Yang Z; You Y; Shan W
    Physiol Meas; 2021 Aug; 42(8):. PubMed ID: 34315149
    [No Abstract]   [Full Text] [Related]  

  • 11. SomnNET: An SpO2 Based Deep Learning Network for Sleep Apnea Detection in Smartwatches.
    John A; Nundy KK; Cardiff B; John D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1961-1964. PubMed ID: 34891671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep disorder and apnea events detection framework with high performance using two-tier learning model design.
    Arslan RS
    PeerJ Comput Sci; 2023; 9():e1554. PubMed ID: 37810361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogram.
    Chen L; Zhang X; Wang H
    J Med Syst; 2015 May; 39(5):47. PubMed ID: 25732075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable Sleep Apnea Syndrome Screening and Event Detection Using Long Short-Term Memory Recurrent Neural Network.
    Chang HC; Wu HT; Huang PC; Ma HP; Lo YL; Huang YH
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing Obstructive Versus Central Apneas in Infrared Video of Sleep Using Deep Learning: Validation Study.
    Akbarian S; Montazeri Ghahjaverestan N; Yadollahi A; Taati B
    J Med Internet Res; 2020 May; 22(5):e17252. PubMed ID: 32441656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of obstructive sleep apnea using ensemble of recurrence plot convolutional neural networks (RPCNNs) from polysomnography signals.
    Taghizadegan Y; Jafarnia Dabanloo N; Maghooli K; Sheikhani A
    Med Hypotheses; 2021 Sep; 154():110659. PubMed ID: 34399170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of Sleep Apnea Severity by Electrocardiogram Monitoring Using a Novel Wearable Device.
    Baty F; Boesch M; Widmer S; Annaheim S; Fontana P; Camenzind M; Rossi RM; Schoch OD; Brutsche MH
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31947905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals.
    ElMoaqet H; Eid M; Glos M; Ryalat M; Penzel T
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram.
    Erdenebayar U; Kim YJ; Park JU; Joo EY; Lee KJ
    Comput Methods Programs Biomed; 2019 Oct; 180():105001. PubMed ID: 31421606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of the spectral autocorrelation function and autoregressive models for automated sleep apnea detection using single-lead ECG signal.
    Zarei A; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2020 Oct; 195():105626. PubMed ID: 32634646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.