These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37430664)

  • 1. Multi-Sensor Data Fusion and CNN-LSTM Model for Human Activity Recognition System.
    Zhou H; Zhao Y; Liu Y; Lu S; An X; Liu Q
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Activity Recognition Method Based on FMCW Radar Sensor with Multi-Domain Feature Attention Fusion Network.
    Cao L; Liang S; Zhao Z; Wang D; Fu C; Du K
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a Low-Cost Solution for Gait Analysis Using Millimeter Wave Sensor and Machine Learning.
    Alanazi MA; Alhazmi AK; Alsattam O; Gnau K; Brown M; Thiel S; Jackson K; Chodavarapu VP
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Objective Association Detection of Farmland Obstacles Based on Information Fusion of Millimeter Wave Radar and Camera.
    Lv P; Wang B; Cheng F; Xue J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor.
    Khatun MA; Yousuf MA; Ahmed S; Uddin MZ; Alyami SA; Al-Ashhab S; Akhdar HF; Khan A; Azad A; Moni MA
    IEEE J Transl Eng Health Med; 2022; 10():2700316. PubMed ID: 35795873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Human Activity Recognition Performance by Data Fusion and Feature Engineering.
    Chen J; Sun Y; Sun S
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unifying obstacle detection, recognition, and fusion based on millimeter wave radar and RGB-depth sensors for the visually impaired.
    Long N; Wang K; Cheng R; Hu W; Yang K
    Rev Sci Instrum; 2019 Apr; 90(4):044102. PubMed ID: 31042998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Detection of Rehabilitation Exercise by Stroke Patients Using 3-Layer CNN-LSTM Model.
    Rahman ZU; Ullah SI; Salam A; Rahman T; Khan I; Niazi B
    J Healthc Eng; 2022; 2022():1563707. PubMed ID: 35154616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-scale feature extraction fusion model for human activity recognition.
    Zhang C; Cao K; Lu L; Deng T
    Sci Rep; 2022 Nov; 12(1):20620. PubMed ID: 36450822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing Sensor Deployment for Multi-Sensor-Based HAR System with Improved Glowworm Swarm Optimization Algorithm.
    Tian Y; Zhang J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition.
    Diykh M; Abdulla S; Deo RC; Siuly S; Ali M
    Comput Methods Programs Biomed; 2023 Feb; 229():107305. PubMed ID: 36527814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel CNN-based Bi-LSTM parallel model with attention mechanism for human activity recognition with noisy data.
    Yin X; Liu Z; Liu D; Ren X
    Sci Rep; 2022 May; 12(1):7878. PubMed ID: 35550570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical human activity recognition based on a wearable patch of combined tri-axial ACC and ECG sensors.
    Ren Y; Liu M; Yang Y; Mao L; Chen K
    Digit Health; 2024; 10():20552076231223804. PubMed ID: 38188858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis.
    Al-Qaness MAA; Helmi AM; Dahou A; Elaziz MA
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36290958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.