These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37430677)

  • 1. A Novel Staggered Double-Segmented Grating Slow-Wave Structure for 340 GHz Traveling-Wave Tube.
    Wang Z; Zhu J; Lu Z; Duan J; Chen H; Wang S; Wang Z; Gong H; Gong Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes.
    Wang Y; Guo J; Dong Y; Xu D; Zheng Y; Lu Z; Wang Z; Wang S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A piecewise sine waveguide for terahertz traveling wave tube.
    Zhang L; Jiang Y; Lei W; Hu P; Guo J; Song R; Tang X; Ma G; Chen H; Wei Y
    Sci Rep; 2022 Jun; 12(1):10449. PubMed ID: 35729233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Symmetrical Quasi-Synchronous Step-Transition Folded Waveguide Slow Wave Structure for 650 GHz Traveling Wave Tubes.
    Xu D; He T; Zheng Y; Lu Z; Gong H; Wang Z; Duan Z; Wang S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-beam and double-mode staggered double vane travelling wave tube with ultra-wide band.
    Zhang Z; Ruan C; Fahad AK; Zhang C; Su Y; Wang P; He W
    Sci Rep; 2020 Nov; 10(1):20159. PubMed ID: 33214669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-mode and double-beam staggered double-vane traveling-wave tube with high-power and broadband at terahertz band.
    Wang W; Zhang Z; Wang P; Zhao Y; Zhang F; Ruan C
    Sci Rep; 2022 Jul; 12(1):12012. PubMed ID: 35835793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
    Feng Y; Bian X; Song B; Li Y; Pan P; Feng J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
    Sirigiri JR; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258302. PubMed ID: 12857176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.
    Pan P; Zheng Y; Li Y; Song X; Feng Z; Feng J; Britt RD; Luhmann NC
    IEEE Trans Electron Devices; 2023 Nov; 70(11):5897-5902. PubMed ID: 39130611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method for detecting thermal characteristics of slow-wave structure of helix traveling-wave tube using external heat source.
    He X; Feng SW; Yang F; Zhang YM
    Rev Sci Instrum; 2019 Sep; 90(9):094702. PubMed ID: 31575272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Measurement of a Novel Overmoded TE
    Lu C; Jiang W; Wu Z; Liu G; Wang J; Pu Y; Luo Y
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams.
    Shu GX; Liu G; Qian ZF
    Opt Express; 2018 Apr; 26(7):8040-8048. PubMed ID: 29715777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency terahertz-wave generation based on extended interaction oscillator with strongly-coupled 2π mode operation.
    Xu C; Lu J; Tang Y; Tang X
    Sci Rep; 2024 Jul; 14(1):15125. PubMed ID: 38956116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic-band-gap traveling-wave gyrotron amplifier.
    Nanni EA; Lewis SM; Shapiro MA; Griffin RG; Temkin RJ
    Phys Rev Lett; 2013 Dec; 111(23):235101. PubMed ID: 24476286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute Instability near the Band Edge of Traveling-Wave Amplifiers.
    Hung DM; Rittersdorf IM; Zhang P; Chernin D; Lau YY; Antonsen TM; Luginsland JW; Simon DH; Gilgenbach RM
    Phys Rev Lett; 2015 Sep; 115(12):124801. PubMed ID: 26430996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Angular Radial Extended Interaction Amplifier at the W Band.
    Dong Y; Wang S; Guo J; Wang Z; Gong H; Lu Z; Duan Z; Gong Y
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-wave Y-band planar BWO with wide tunable bandwidth.
    Xi H; Wang J; He Z; Zhu G; Wang Y; Wang H; Chen Z; Li R; Liu L
    Sci Rep; 2018 Jan; 8(1):348. PubMed ID: 29321646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of uniform permanent magnet electronic optical system for 220 GHz sheet electron beam traveling wave tube.
    Liu W; Guo J; Zhao C; Guo X; Wang M
    Sci Rep; 2020 Aug; 10(1):13680. PubMed ID: 32792609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traveling-wave tubes and backward-wave oscillators with weak external magnetic fields.
    Abu-elfadl TM; Nusinovich GS; Shkvarunets AG; Carmel Y; Antonsen TM; Goebel D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066501. PubMed ID: 11415235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and verification of a backward wave oscillation suppression circuit for the Ka-band gyrotron travelling-wave tube.
    Ma Y; Liu G; Lei C; Cao Y; Wang W; Wang Y; Yao Y; Jiang W; Wang J; Luo Y
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37823769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.