BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37430728)

  • 1. Implementation of a Real-Time Object Pick-and-Place System Based on a Changing Strategy for Rapidly-Exploring Random Tree.
    Wong CC; Chen CJ; Wong KY; Feng HM
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.
    Wei K; Ren B
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm.
    Long H; Li G; Zhou F; Chen T
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Path planning of a manipulator based on an improved P_RRT* algorithm.
    Yi J; Yuan Q; Sun R; Bai H
    Complex Intell Systems; 2022; 8(3):2227-2245. PubMed ID: 35079563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the Improved Rapidly Exploring Random Tree Algorithm to an Insect-like Mobile Robot in a Narrow Environment.
    Wang L; Yang X; Chen Z; Wang B
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved RRT* Algorithm for Disinfecting Robot Path Planning.
    Wang H; Zhou X; Li J; Yang Z; Cao L
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in Rapidly-exploring random tree: A review.
    Xu T
    Heliyon; 2024 Jun; 10(11):e32451. PubMed ID: 38961991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Path Planning Method with a Bidirectional Potential Field Probabilistic Step Size RRT for a Dual Manipulator.
    Liu Y; Tao W; Li S; Li Y; Wang Q
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Rapidly-Exploring Random Trees Algorithm Combining Parent Point Priority Determination Strategy and Real-Time Optimization Strategy for Path Planning.
    Tian L; Zhang Z; Zheng C; Tian Y; Zhao Y; Wang Z; Qin Y
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved RRT-Connect Algorithm Based on Triangular Inequality for Robot Path Planning.
    Kang JG; Lim DW; Choi YS; Jang WJ; Jung JW
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Bidirectional RRT* Algorithm for Robot Path Planning.
    Xin P; Wang X; Liu X; Wang Y; Zhai Z; Ma X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Distorted Configuration Space Path Planning and its Application to Robot Manipulators.
    Xie Y; Zhou R; Yang Y
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sampling-Based Algorithm with the Metropolis Acceptance Criterion for Robot Motion Planning.
    Liu Y; Zhao Y; Yan S; Song C; Li F
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bidirectional Interpolation Method for Post-Processing in Sampling-Based Robot Path Planning.
    Kang TW; Kang JG; Jung JW
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring a Novel Multiple-Query Resistive Grid-Based Planning Method Applied to High-DOF Robotic Manipulators.
    Huerta-Chua J; Diaz-Arango G; Vazquez-Leal H; Flores-Mendez J; Moreno-Moreno M; Ambrosio-Lazaro RC; Hernandez-Mejia C
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel AGV Path Planning Approach for Narrow Channels Based on the Bi-RRT Algorithm with a Failure Rate Threshold.
    Wu B; Zhang W; Chi X; Jiang D; Yi Y; Lu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey of path planning of industrial robots based on rapidly exploring random trees.
    Luo S; Zhang M; Zhuang Y; Ma C; Li Q
    Front Neurorobot; 2023; 17():1268447. PubMed ID: 38023457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Path Planning for a Microrobot Passing through Environments with Narrow Passages.
    Huang CM; Hsu SH
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step collision-free trajectory planning of biped climbing robots in spatial trusses.
    Zhu H; Guan Y; Chen S; Su M; Zhang H
    Robotics Biomim; 2016; 3():1. PubMed ID: 27054060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place.
    Kim B; Kwon G; Park C; Kwon NK
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.