These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37430811)

  • 1. Human Activity Recognition in the Presence of Occlusion.
    Vernikos I; Spyropoulos T; Spyrou E; Mylonas P
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Regression Approach for Human Activity Recognition Under Partial Occlusion.
    Vernikos I; Spyrou E; Kostis IA; Mathe E; Mylonas P
    Int J Neural Syst; 2023 Sep; 33(9):2350047. PubMed ID: 37602705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multimodal Fusion Approach for Human Activity Recognition.
    Koutrintzes D; Spyrou E; Mathe E; Mylonas P
    Int J Neural Syst; 2023 Jan; 33(1):2350002. PubMed ID: 36573880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Post Hoc Explainability of Optimized Self-Organizing Reservoir Network for Action Recognition.
    Lee GC; Loo CK
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep neural network model for multi-view human activity recognition.
    Putra PU; Shima K; Shimatani K
    PLoS One; 2022; 17(1):e0262181. PubMed ID: 34995315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
    Hussain A; Hussain T; Ullah W; Baik SW
    Comput Intell Neurosci; 2022; 2022():3454167. PubMed ID: 35419045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Sensor-Embedded Neural Network for Human Activity Recognition.
    Shakerian A; Douet V; Shoaraye Nejati A; Landry R
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Activity and Motion Pattern Recognition within Indoor Environment Using Convolutional Neural Networks Clustering and Naive Bayes Classification Algorithms.
    Ali A; Samara W; Alhaddad D; Ware A; Saraereh OA
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Inertial Sensor-Based Activity Recognition in Neurological Populations.
    Celik Y; Aslan MF; Sabanci K; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition.
    Mekruksavanich S; Jitpattanakul A
    Sci Rep; 2023 Jul; 13(1):12067. PubMed ID: 37495634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-View Human Action Recognition Using Skeleton Based-FineKNN with Extraneous Frame Scrapping Technique.
    Malik NUR; Sheikh UU; Abu-Bakar SAR; Channa A
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stacked deep analytic model for human activity recognition on a UCI HAR database.
    Pang YH; Ping LY; Ling GF; Yin OS; How KW
    F1000Res; 2021; 10():1046. PubMed ID: 35360410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning for Human Activity Recognition on 3D Human Skeleton: Survey and Comparative Study.
    Nguyen HC; Nguyen TH; Scherer R; Le VH
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining One-Dimensional Convolutional Models in Human Activity Recognition and Biometric Identification Tasks.
    Aquino G; Costa MGF; Costa Filho CFF
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.
    Cho H; Yoon SM
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.