These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37430830)
1. A Regularized Regression Thermal Error Modeling Method for CNC Machine Tools under Different Ambient Temperatures and Spindle Speeds. Wei X; Ye H; Zhou J; Pan S; Qian M Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430830 [TBL] [Abstract][Full Text] [Related]
2. Year-Round Thermal Error Modeling and Compensation for the Spindle of Machine Tools Based on Ambient Temperature Intervals. Wei X; Ye H; Feng X Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890761 [TBL] [Abstract][Full Text] [Related]
3. Thermal error modeling of machine tool based on dimensional error of machined parts in automatic production line. Shi H; Xiao Y; Mei X; Tao T; Wang H ISA Trans; 2023 Apr; 135():575-584. PubMed ID: 36270808 [TBL] [Abstract][Full Text] [Related]
4. Thermal Positioning Error Modeling of Servo Axis Based on Empirical Modeling Method. Li Y; Shi H; Ji S; Liang F Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672093 [TBL] [Abstract][Full Text] [Related]
5. Intelligent Sensing of Thermal Error of CNC Machine Tool Spindle Based on Multi-Source Information Fusion. Yang Z; Liu B; Zhang Y; Chen Y; Zhao H; Zhang G; Yi W; Zhang Z Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894405 [TBL] [Abstract][Full Text] [Related]
6. A Modeling Method for Thermal Error Prediction of CNC Machine Equipment Based on Sparrow Search Algorithm and Long Short-Term Memory Neural Network. Gao Y; Xia X; Guo Y Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050660 [TBL] [Abstract][Full Text] [Related]
7. Hybrid optimization algorithm for thermal displacement compensation of computer numerical control machine tool using regression analysis and fuzzy inference. Chang PY; Yang PY; Chou FI; Chen SH Sci Prog; 2023; 106(2):368504231171268. PubMed ID: 37139627 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Isabona J; Imoize AL; Kim Y Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632184 [TBL] [Abstract][Full Text] [Related]
9. A Distributed Learning Method for ℓ 1 -Regularized Kernel Machine over Wireless Sensor Networks. Ji X; Hou C; Hou Y; Gao F; Wang S Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27376298 [TBL] [Abstract][Full Text] [Related]
10. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
11. Interpretable machine learning models for hospital readmission prediction: a two-step extracted regression tree approach. Gao X; Alam S; Shi P; Dexter F; Kong N BMC Med Inform Decis Mak; 2023 Jun; 23(1):104. PubMed ID: 37277767 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous measurement of 5DOF spindle error motions in CNC machine tools. Jia P; Li P; Zheng F; Feng Q; Zhang B Appl Opt; 2022 Jul; 61(19):5704-5713. PubMed ID: 36255802 [TBL] [Abstract][Full Text] [Related]
13. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
14. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968 [TBL] [Abstract][Full Text] [Related]
15. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Ren X; Mi Z; Georgopoulos PG Environ Int; 2020 Sep; 142():105827. PubMed ID: 32593834 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior. Katić K; Li R; Zeiler W Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366 [TBL] [Abstract][Full Text] [Related]
17. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography. Feng J; Qin C; Jia K; Han D; Liu K; Zhu S; Yang X; Tian J Med Phys; 2011 Nov; 38(11):5933-44. PubMed ID: 22047358 [TBL] [Abstract][Full Text] [Related]
18. A novel remaining useful life prediction method based on multi-support vector regression fusion and adaptive weight updating. Li Y; Huang X; Zhao C; Ding P ISA Trans; 2022 Dec; 131():444-459. PubMed ID: 35581022 [TBL] [Abstract][Full Text] [Related]
19. Ship roll motion prediction based on ℓ1 regularized extreme learning machine. Guan B; Yang W; Wang Z; Tang Y PLoS One; 2018; 13(10):e0206476. PubMed ID: 30376580 [TBL] [Abstract][Full Text] [Related]
20. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients. Olatinwo DD; Abu-Mahfouz A; Hancke G; Myburgh H Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]