These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37430845)

  • 1. In-Lab Demonstration of an Underwater Acoustic Spiral Source.
    Viegas R; Zabel F; Silva A
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L).
    Brown DA; Aronov B; Bachand C
    J Acoust Soc Am; 2012 Dec; 132(6):3611-3. PubMed ID: 23231092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spiral wave front beacon for underwater navigation: basic concept and modeling.
    Hefner BT; Dzikowicz BR
    J Acoust Soc Am; 2011 Jun; 129(6):3630-9. PubMed ID: 21682388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spiral wave front beacon for underwater navigation: transducer prototypes and testing.
    Dzikowicz BR; Hefner BT
    J Acoust Soc Am; 2012 May; 131(5):3748-54. PubMed ID: 22559350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Underwater Testing of a Vector Hydrophone Comprising a Triaxial Piezoelectric Accelerometer and Spherical Hydrophone.
    Roh T; Yeo HG; Joh C; Roh Y; Kim K; Seo HS; Choi H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Importance of Consistent Insonation Conditions During Hydrophone Calibration and Use.
    Rajagopal S; Robinson SP; Ablitt J; Miloro P; Wang L; Zeqiri B; Hurrell A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):120-127. PubMed ID: 36094977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A misalignment angle error calibration method of underwater acoustic array in strapdown inertial navigation system/ultrashort baseline integrated navigation system based on single transponder mode.
    Tong J; Xu X; Zhang T; Li Y; Yao Y; Weng C; Hou L; Zhang L
    Rev Sci Instrum; 2019 Aug; 90(8):085001. PubMed ID: 31472661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Directional Angle Estimation of Underwater Acoustic Sources Using a Marine Vehicle.
    Choi J; Park J; Lee Y; Jung J; Choi HT
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underwater Spiral Wave Sound Source Based on Phased Array with Three Transducers.
    Lu W; Guo R; Lan Y; Sun H; Li S; Zhou T
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and underwater acoustic target recognition using only two hydrophones based on machine learning.
    Yu Q; Zhang W; Zhu M; Shi J; Liu Y; Liu S
    J Acoust Soc Am; 2024 Jun; 155(6):3606-3614. PubMed ID: 38833282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of spiral wave front sonar for active localization.
    Dzikowicz BR; Tressler JF; Brown DA
    J Acoust Soc Am; 2019 Dec; 146(6):4821. PubMed ID: 31893694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.
    Lepper PA; D'Spain GL
    J Acoust Soc Am; 2007 Aug; 122(2):892-905. PubMed ID: 17672639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direction-Finding Study of a 1.7 mm Diameter Towed Hydrophone Array Based on UWFBG.
    Wu S; Huang J; Pang Y; Wang J; Gu H
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral Sound Wave Transducer Based on the Longitudinal Vibration.
    Lu W; Lan Y; Guo R; Zhang Q; Li S; Zhou T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.
    Wang Q; Dai HN; Li X; Wang H; Xiao H
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous Deployment of Underwater Acoustic Monitoring Devices Using an Unmanned Aerial Vehicle: The Flying Hydrophone.
    Babatunde D; Pomeroy S; Lepper P; Clark B; Walker R
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underwater noise from pile driving of conductor casing at a deep-water oil platform.
    MacGillivray A
    J Acoust Soc Am; 2018 Jan; 143(1):450. PubMed ID: 29390745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic positioning using a tetrahedral ultrashort baseline array of an acoustic modem source transmitting frequency-hopped sequences.
    Beaujean PP; Mohamed AI; Warin R
    J Acoust Soc Am; 2007 Jan; 121(1):144-57. PubMed ID: 17297770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ocean long range underwater navigation.
    Mikhalevsky PN; Sperry BJ; Woolfe KF; Dzieciuch MA; Worcester PF
    J Acoust Soc Am; 2020 Apr; 147(4):2365. PubMed ID: 32359272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spherical-Omnidirectional Piezoelectric Composite Transducer for High- Frequency Underwater Acoustics.
    Zhang Y; Wang L; Qin L; Zhong C; Hao S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1791-1796. PubMed ID: 33275579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.