These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37430848)

  • 1. Estimation of Knee Joint Angle from Surface EMG Using Multiple Kernels Relevance Vector Regression.
    Li HB; Guan XR; Li Z; Zou KF; He L
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Joint Angles Based on Human Lower Limb Surface Electromyography.
    Zhao H; Qiu Z; Peng D; Wang F; Wang Z; Qiu S; Shi X; Chu Q
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network.
    Zhang S; Lu J; Huo W; Yu N; Han J
    Front Neurorobot; 2022; 16():978014. PubMed ID: 36386394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Motion Estimation of Knee Joint Based on a Parameter Self-Updating Mechanism Model.
    Li J; Li K; Zhang J; Cao J
    Bioengineering (Basel); 2023 Aug; 10(9):. PubMed ID: 37760130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Channel sEMG-Based Estimation of Knee Joint Angle Using a Decomposition Algorithm With a State-Space Model.
    Zhang S; Yu N; Guo Z; Huo W; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4703-4712. PubMed ID: 38015663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature.
    Ma X; Liu Y; Song Q; Wang C
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. sEMG-Based End-to-End Continues Prediction of Human Knee Joint Angles Using the Tightly Coupled Convolutional Transformer Model.
    Liang T; Sun N; Wang Q; Bu J; Li L; Chen Y; Cao M; Ma J; Liu T
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5272-5280. PubMed ID: 37566511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knee Angle Estimation from Surface EMG during Walking Using Attention-Based Deep Recurrent Neural Networks: Feasibility and Initial Demonstration in Cerebral Palsy.
    Abdelhady M; Damiano DL; Bulea TC
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Adaptive Prediction of Human Motion Intention Based on sEMG.
    Ding Z; Yang C; Wang Z; Yin X; Jiang F
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent Neural Network Enabled Continuous Motion Estimation of Lower Limb Joints From Incomplete sEMG Signals.
    Wang G; Jin L; Zhang J; Duan X; Yi J; Zhang M; Sun Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3577-3589. PubMed ID: 39269795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG-Based Estimation of Lower Limb Joint Angles and Moments Using Long Short-Term Memory Network.
    Truong MTN; Ali AEA; Owaki D; Hayashibe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint mechanical properties estimation with a novel EMG-based knee rehabilitation robot: A machine learning approach.
    Bamdad M; Mokri C; Abolghasemi V
    Med Eng Phys; 2022 Dec; 110():103933. PubMed ID: 36509665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Load Variation on Joint Angle Estimation From Surface EMG Signals.
    Tang Z; Yu H; Cang S
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1342-1350. PubMed ID: 26600163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques.
    Mokri C; Bamdad M; Abolghasemi V
    Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous motion estimation of lower limbs based on deep belief networks and random forest.
    Wang F; Lu J; Fan Z; Ren C; Geng X
    Rev Sci Instrum; 2022 Apr; 93(4):044106. PubMed ID: 35489877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MyoNet: A Transfer-Learning-Based LRCN for Lower Limb Movement Recognition and Knee Joint Angle Prediction for Remote Monitoring of Rehabilitation Progress From sEMG.
    Gautam A; Panwar M; Biswas D; Acharyya A
    IEEE J Transl Eng Health Med; 2020; 8():2100310. PubMed ID: 32190428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A practical strategy for sEMG-based knee joint moment estimation during gait and its validation in individuals with cerebral palsy.
    Kwon S; Park HS; Stanley CJ; Kim J; Kim J; Damiano DL
    IEEE Trans Biomed Eng; 2012 May; 59(5):1480-7. PubMed ID: 22410952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.