These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37430848)

  • 21. An EMG-Driven Musculoskeletal Model for Estimating Continuous Wrist Motion.
    Zhao Y; Zhang Z; Li Z; Yang Z; Dehghani-Sanij AA; Xie S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3113-3120. PubMed ID: 33186119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EMG and Joint Angle-Based Machine Learning to Predict Future Joint Angles at the Knee.
    Coker J; Chen H; Schall MC; Gallagher S; Zabala M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals.
    Zangene AR; Williams Samuel O; Abbasi A; Nazarpour K; McEwan AA; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of least square method for muscular strength estimation in hand motion recognition using surface EMG.
    Nakano T; Nagata K; Yamada M; Magatani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2655-8. PubMed ID: 19963777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking.
    McGrath T; Stirling L
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regression Algorithm of Bone Age Estimation of Knee-joint Based on Principal Component Analysis and Support Vector Machine.
    Lei YY; Shen YS; Wang YH; Zhao H
    Fa Yi Xue Za Zhi; 2019 Apr; 35(2):194-199. PubMed ID: 31135114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proportional myoelectric and compensating control of a cable-conduit mechanism-driven upper limb exoskeleton.
    Xiao F
    ISA Trans; 2019 Jun; 89():245-255. PubMed ID: 30711342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergy-based knee angle estimation using kinematics of thigh.
    Liang FY; Gao F; Liao WH
    Gait Posture; 2021 Sep; 89():25-30. PubMed ID: 34217950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Dynamic IMU-to-Segment Misalignment Error on 3-DOF Knee Angle Estimation in Walking and Running.
    Jiang C; Yang Y; Mao H; Yang D; Wang W
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. sEMG-angle estimation using feature engineering techniques for least square support vector machine.
    Gao Y; Luo Y; Zhao J; Li Q
    Technol Health Care; 2019; 27(S1):31-46. PubMed ID: 31045525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Health Index Monitoring of Sports Injury Rehabilitation Training Based on Wearable Sensors.
    Yi J; Zou Y
    J Healthc Eng; 2021; 2021():6302991. PubMed ID: 34630992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
    Zhang Q; Hosoda R; Venture G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():21-4. PubMed ID: 24109614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.
    Watanabe K; Akima H
    Scand J Med Sci Sports; 2011 Dec; 21(6):e412-20. PubMed ID: 21672026
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gaussian Process Autoregression for Joint Angle Prediction Based on sEMG Signals.
    Liang J; Shi Z; Zhu F; Chen W; Chen X; Li Y
    Front Public Health; 2021; 9():685596. PubMed ID: 34095080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elbow Joint Angle Estimation with Surface Electromyography Using Autoregressive Models.
    Sommer LF; Barreira C; Noriega C; Camargo-Junior F; Moura RT; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1472-1475. PubMed ID: 30440671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.
    Saito A; Akima H
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1406-12. PubMed ID: 24075525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knee motion pattern classification from trunk muscle based on sEMG signals.
    Lopez-Delis A; Delisle-Rodriguez D; Villa-Parra AC; Bastos-Filho T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2604-7. PubMed ID: 26736825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of joint position on electromyographic and torque generation during maximal voluntary isometric contractions of the hamstrings and gluteus maximus muscles.
    Worrell TW; Karst G; Adamczyk D; Moore R; Stanley C; Steimel B; Steimel S
    J Orthop Sports Phys Ther; 2001 Dec; 31(12):730-40. PubMed ID: 11767248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.