These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37430883)

  • 1. Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning.
    Zeng S; Pi D
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion.
    Shang S; Wang C; Liang X; Cheung CF; Zheng P
    Micromachines (Basel); 2023 Oct; 14(11):. PubMed ID: 38004873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Piecewise Cubic Hermite Interpolating Polynomial-Enhanced Convolutional Gated Recurrent Method under Multiple Sensor Feature Fusion for Tool Wear Prediction.
    He J; Yuan L; Lei H; Wang K; Weng Y; Gao H
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships.
    Ren S; Wu S; Weng Q
    Bioresour Technol; 2023 Feb; 369():128472. PubMed ID: 36509306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traffic flow prediction using bi-directional gated recurrent unit method.
    Wang S; Shao C; Zhang J; Zheng Y; Meng M
    Urban Inform; 2022; 1(1):16. PubMed ID: 36471871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Machine Learning Model Based on GRU and LSTM to Predict the Environmental Parameters in a Layer House, Taking CO
    Chen X; Yang L; Xue H; Li L; Yu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework.
    Ullah H; Munir A
    J Imaging; 2023 Jun; 9(7):. PubMed ID: 37504807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230.
    Cheng M; Jiao L; Yan P; Gu H; Sun J; Qiu T; Wang X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.
    Zhao R; Yan R; Wang J; Mao K
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-informed deep learning for structural vibration identification and its application on a benchmark structure.
    Zhang M; Guo T; Zhang G; Liu Z; Xu W
    Philos Trans A Math Phys Eng Sci; 2024 Jan; 382(2264):20220400. PubMed ID: 37980933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface roughness prediction of aircraft after coating removal based on optical image and deep learning.
    Hu Q; Xu H; Chang Y
    Sci Rep; 2022 Nov; 12(1):19407. PubMed ID: 36371530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Blood Risk Score in Diabetes Using Deep Neural Networks.
    Toledo-Marín JQ; Ali T; van Rooij T; Görges M; Wasserman WW
    J Clin Med; 2023 Feb; 12(4):. PubMed ID: 36836230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PCA-EEMD-CNN-Attention-GRU-Encoder-Decoder Accurate Prediction Model for Key Parameters of Seawater Quality in Zhanjiang Bay.
    Xie Z; Li Z; Mo C; Wang J
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-informed deep learning for prediction of CO
    Shokouhi P; Kumar V; Prathipati S; Hosseini SA; Giles CL; Kifer D
    J Contam Hydrol; 2021 Aug; 241():103835. PubMed ID: 34091408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ncDENSE: a novel computational method based on a deep learning framework for non-coding RNAs family prediction.
    Chen K; Zhu X; Wang J; Hao L; Liu Z; Liu Y
    BMC Bioinformatics; 2023 Feb; 24(1):68. PubMed ID: 36849908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.
    Jin W; Dong S; Yu C; Luo Q
    Comput Biol Med; 2022 Jul; 146():105560. PubMed ID: 35551008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-Informed Neural Networks with Group Contribution Methods.
    Babaei MR; Stone R; Iv TAK; Hedengren J
    J Chem Theory Comput; 2023 Jul; 19(13):4163-4171. PubMed ID: 37293975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.