These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37431050)

  • 1. Heterologous Expression of the
    Wang X; Zhao Y; Zhang S; Lin X; Liang H; Chen Y; Ji C
    Foods; 2022 Oct; 11(20):. PubMed ID: 37431050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Expression and characterization of a multicopper oxidase from Lactobacillus fermentum].
    Xu J; Fang F
    Sheng Wu Gong Cheng Xue Bao; 2019 Jul; 35(7):1286-1294. PubMed ID: 31328485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fusion expression with catalase improves the stability of multicopper oxidase and its efficiency in degrading biogenic amines].
    Ni X; Fang F
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4382-4394. PubMed ID: 34984883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a new laccase from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation.
    Callejón S; Sendra R; Ferrer S; Pardo I
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):3113-24. PubMed ID: 26590586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous Expression and Application of Multicopper Oxidases from
    Li B; Wang Y; Xue L; Lu S
    Protein Pept Lett; 2021; 28(2):183-194. PubMed ID: 32543357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines degradation by Lactobacillus casei.
    Pištěková H; Jančová P; Berčíková L; Buňka F; Sokolová I; Šopík T; Maršálková K; Amaral OMRP; Buňková L
    Food Microbiol; 2020 Oct; 91():103550. PubMed ID: 32539976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines.
    Guarcello R; De Angelis M; Settanni L; Formiglio S; Gaglio R; Minervini F; Moschetti G; Gobbetti M
    Appl Environ Microbiol; 2016 Dec; 82(23):6870-6880. PubMed ID: 27637883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of wine-associated lactic acid bacteria to degrade biogenic amines.
    García-Ruiz A; González-Rompinelli EM; Bartolomé B; Moreno-Arribas MV
    Int J Food Microbiol; 2011 Aug; 148(2):115-20. PubMed ID: 21641669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model.
    Herrero-Fresno A; Martínez N; Sánchez-Llana E; Díaz M; Fernández M; Martin MC; Ladero V; Alvarez MA
    Int J Food Microbiol; 2012 Jul; 157(2):297-304. PubMed ID: 22721727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro synthesis of biogenic amines by Brochothrix thermosphacta isolates from meat and meat products and the influence of other microorganisms.
    Nowak A; Czyzowska A
    Meat Sci; 2011 Jul; 88(3):571-4. PubMed ID: 21382674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine.
    Callejón S; Sendra R; Ferrer S; Pardo I
    PLoS One; 2017; 12(10):e0186019. PubMed ID: 29020076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histamine and tyramine degradation by food fermenting microorganisms.
    Leuschner RG; Heidel M; Hammes WP
    Int J Food Microbiol; 1998 Jan; 39(1-2):1-10. PubMed ID: 9562873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine.
    Callejón S; Sendra R; Ferrer S; Pardo I
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):185-98. PubMed ID: 23515835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review.
    Omer AK; Mohammed RR; Ameen PSM; Abas ZA; Ekici K
    J Food Prot; 2021 Sep; 84(9):1539-1548. PubMed ID: 34375430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction in Biogenic Amine Content in
    Lee J; Jin YH; Pawluk AM; Mah JH
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes.
    Eom JS; Seo BY; Choi HS
    J Microbiol Biotechnol; 2015 Sep; 25(9):1519-27. PubMed ID: 26165318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technological Factors Affecting Biogenic Amine Content in Foods: A Review.
    Gardini F; Özogul Y; Suzzi G; Tabanelli G; Özogul F
    Front Microbiol; 2016; 7():1218. PubMed ID: 27570519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Biogenic Amines Formation and Degradation Abilities of
    Li L; Wen X; Wen Z; Chen S; Wang L; Wei X
    Front Microbiol; 2018; 9():1015. PubMed ID: 29867901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Biogenic Amine-Degrading
    Sun X; Sun E; Sun L; Su L; Jin Y; Ren L; Zhao L
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed Starter Culture Regulates Biogenic Amines Formation via Decarboxylation and Transamination during Chinese Rice Wine Fermentation.
    Xia X; Luo Y; Zhang Q; Huang Y; Zhang B
    J Agric Food Chem; 2018 Jun; 66(25):6348-6356. PubMed ID: 29873235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.