BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37431445)

  • 21. Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species.
    Kehrberger S; Holzschuh A
    PLoS One; 2019; 14(6):e0218824. PubMed ID: 31233540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Warming of experimental plant-pollinator communities advances phenologies, alters traits, reduces interactions and depresses reproduction.
    de Manincor N; Fisogni A; Rafferty NE
    Ecol Lett; 2023 Feb; 26(2):323-334. PubMed ID: 36592334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenological mismatches and the demography of solitary bees.
    Vázquez DP; Vitale N; Dorado J; Amico G; Stevani EL
    Proc Biol Sci; 2023 Jan; 290(1990):20221847. PubMed ID: 36629108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
    Wolkovich EM; Davies TJ; Schaefer H; Cleland EE; Cook BI; Travers SE; Willis CG; Davis CC
    Am J Bot; 2013 Jul; 100(7):1407-21. PubMed ID: 23797366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term, climate-driven phenological shift in a tropical large carnivore.
    Abrahms B; Rafiq K; Jordan NR; McNutt JW
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2121667119. PubMed ID: 35759658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Body mass decline in a Mediterranean community of solitary bees supports the size shrinking effect of climatic warming.
    Herrera CM; Núñez A; Valverde J; Alonso C
    Ecology; 2023 Sep; 104(9):e4128. PubMed ID: 37342062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator.
    Olliff-Yang RL; Mesler MR
    AoB Plants; 2018 Aug; 10(4):ply040. PubMed ID: 30046417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ecological implications of intra- and inter-species variation in phenological sensitivity.
    Xie Y; Thammavong HT; Park DS
    New Phytol; 2022 Oct; 236(2):760-773. PubMed ID: 35801834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits.
    Geissler C; Davidson A; Niesenbaum RA
    PeerJ; 2023; 11():e15188. PubMed ID: 37101791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phenological indices of avian reproduction: cryptic shifts and prediction across large spatial and temporal scales.
    Gullett P; Hatchwell BJ; Robinson RA; Evans KL
    Ecol Evol; 2013 Jul; 3(7):1864-77. PubMed ID: 23919135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration.
    Bloom TDS; O'Leary DS; Riginos C
    Ecol Appl; 2022 Sep; 32(6):e2583. PubMed ID: 35333428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range.
    Love NLR; Mazer SJ
    Am J Bot; 2021 Oct; 108(10):1873-1888. PubMed ID: 34642935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenological sensitivity and seasonal variability explain climate-driven trends in Mediterranean butterflies.
    Colom P; Ninyerola M; Pons X; Traveset A; Stefanescu C
    Proc Biol Sci; 2022 Apr; 289(1973):20220251. PubMed ID: 35473386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops.
    Rader R; Reilly J; Bartomeus I; Winfree R
    Glob Chang Biol; 2013 Oct; 19(10):3103-10. PubMed ID: 23704044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenological plasticity is a poor predictor of subalpine plant population performance following experimental climate change.
    Block S; Alexander JM; Levine JM
    Oikos; 2020 Feb; 129(2):184-193. PubMed ID: 32001946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.
    Pisanty G; Mandelik Y
    Ecol Appl; 2015 Apr; 25(3):742-52. PubMed ID: 26214919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change.
    Davies WJ
    Ecology; 2019 Apr; 100(4):e02612. PubMed ID: 30636278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates.
    Bolmgren K; Vanhoenacker D; Miller-Rushing AJ
    Int J Biometeorol; 2013 May; 57(3):367-75. PubMed ID: 22744801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.