These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 37431908)
1. Autoencoders for dimensionality reduction in molecular dynamics: Collective variable dimension, biasing, and transition states. Belkacemi Z; Bianciotto M; Minoux H; Lelièvre T; Stoltz G; Gkeka P J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431908 [TBL] [Abstract][Full Text] [Related]
2. Chasing Collective Variables Using Autoencoders and Biased Trajectories. Belkacemi Z; Gkeka P; Lelièvre T; Stoltz G J Chem Theory Comput; 2022 Jan; 18(1):59-78. PubMed ID: 34965117 [TBL] [Abstract][Full Text] [Related]
3. The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions. Pérez de Alba Ortíz A; Vreede J; Ensing B Methods Mol Biol; 2019; 2022():255-290. PubMed ID: 31396907 [TBL] [Abstract][Full Text] [Related]
4. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. Chen W; Ferguson AL J Comput Chem; 2018 Sep; 39(25):2079-2102. PubMed ID: 30368832 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning-Assisted Discovery of Hidden States in Expanded Free Energy Space. Ketkaew R; Creazzo F; Luber S J Phys Chem Lett; 2022 Feb; 13(7):1797-1805. PubMed ID: 35171614 [TBL] [Abstract][Full Text] [Related]
6. Automated collective variable discovery for MFSD2A transporter from molecular dynamics simulations. Oh M; Rosa M; Xie H; Khelashvili G Biophys J; 2024 Sep; 123(17):2934-2955. PubMed ID: 38932456 [TBL] [Abstract][Full Text] [Related]
7. Global Dynamics of Yeast Hsp90 Middle and C-Terminal Dimer Studied by Advanced Sampling Simulations. Kandzia F; Ostermeir K; Zacharias M Front Mol Biosci; 2019; 6():93. PubMed ID: 31681792 [TBL] [Abstract][Full Text] [Related]
8. Structural Characterization of Human Heat Shock Protein 90 N-Terminal Domain and Its Variants K112R and K112A in Complex with a Potent 1,2,3-Triazole-Based Inhibitor. Tassone G; Mazzorana M; Mangani S; Petricci E; Cini E; Giannini G; Pozzi C; Maramai S Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012721 [TBL] [Abstract][Full Text] [Related]
9. Perspective: Identification of collective variables and metastable states of protein dynamics. Sittel F; Stock G J Chem Phys; 2018 Oct; 149(15):150901. PubMed ID: 30342445 [TBL] [Abstract][Full Text] [Related]
10. Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer. Morra G; Verkhivker G; Colombo G PLoS Comput Biol; 2009 Mar; 5(3):e1000323. PubMed ID: 19300478 [TBL] [Abstract][Full Text] [Related]
11. MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation. Chen H; Liu H; Feng H; Fu H; Cai W; Shao X; Chipot C J Chem Inf Model; 2022 Jan; 62(1):1-8. PubMed ID: 34939790 [TBL] [Abstract][Full Text] [Related]
12. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis. Cunningham CN; Southworth DR; Krukenberg KA; Agard DA Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663 [TBL] [Abstract][Full Text] [Related]
13. Visualizing the Dynamics of a Protein Folding Machinery: The Mechanism of Asymmetric ATP Processing in Hsp90 and its Implications for Client Remodelling. D'Annessa I; Moroni E; Colombo G J Mol Biol; 2021 Jan; 433(2):166728. PubMed ID: 33275968 [TBL] [Abstract][Full Text] [Related]
14. Extended conformational states dominate the Hsp90 chaperone dynamics. Jussupow A; Lopez A; Baumgart M; Mader SL; Sattler M; Kaila VRI J Biol Chem; 2022 Jul; 298(7):102101. PubMed ID: 35667441 [TBL] [Abstract][Full Text] [Related]
15. An extended autoencoder model for reaction coordinate discovery in rare event molecular dynamics datasets. Frassek M; Arjun A; Bolhuis PG J Chem Phys; 2021 Aug; 155(6):064103. PubMed ID: 34391359 [TBL] [Abstract][Full Text] [Related]
16. Capabilities and limits of autoencoders for extracting collective variables in atomistic materials science. Baima J; Goryaeva AM; Swinburne TD; Maillet JB; Nastar M; Marinica MC Phys Chem Chem Phys; 2022 Oct; 24(38):23152-23163. PubMed ID: 36128869 [TBL] [Abstract][Full Text] [Related]
17. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes. Qiu Y; O'Connor MS; Xue M; Liu B; Huang X J Chem Theory Comput; 2023 Jul; 19(14):4728-4742. PubMed ID: 37382437 [TBL] [Abstract][Full Text] [Related]
18. Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution. Colombo G; Morra G; Meli M; Verkhivker G Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7976-81. PubMed ID: 18511558 [TBL] [Abstract][Full Text] [Related]
19. Assessment and optimization of collective variables for protein conformational landscape: GB1 Ahalawat N; Mondal J J Chem Phys; 2018 Sep; 149(9):094101. PubMed ID: 30195312 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear vs. linear biasing in Trp-cage folding simulations. Spiwok V; Oborský P; Pazúriková J; Křenek A; Králová B J Chem Phys; 2015 Mar; 142(11):115101. PubMed ID: 25796266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]