BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 37431910)

  • 1. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning builds full-QM precision protein force fields in seconds.
    Han Y; Wang Z; Wei Z; Liu J; Li J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34017993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.
    Mackerell AD; Feig M; Brooks CL
    J Comput Chem; 2004 Aug; 25(11):1400-15. PubMed ID: 15185334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building quantum mechanics quality force fields of proteins with the generalized energy-based fragmentation approach and machine learning.
    Cheng Z; Du J; Zhang L; Ma J; Li W; Li S
    Phys Chem Chem Phys; 2022 Jan; 24(3):1326-1337. PubMed ID: 34718360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining the Fragmentation Approach and Neural Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein Energy.
    Wang Z; Han Y; Li J; He X
    J Phys Chem B; 2020 Apr; 124(15):3027-3035. PubMed ID: 32208716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in.
    Ditzler MA; Otyepka M; Sponer J; Walter NG
    Acc Chem Res; 2010 Jan; 43(1):40-7. PubMed ID: 19754142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.
    Vanommeslaeghe K; MacKerell AD
    Biochim Biophys Acta; 2015 May; 1850(5):861-871. PubMed ID: 25149274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-convolutional neural networks for (QM)ML/MM molecular dynamics simulations.
    Hofstetter A; Böselt L; Riniker S
    Phys Chem Chem Phys; 2022 Sep; 24(37):22497-22512. PubMed ID: 36106790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces.
    König G; Riniker S
    Interface Focus; 2020 Dec; 10(6):20190121. PubMed ID: 33184586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties.
    Riahi S; Rowley CN
    J Comput Chem; 2014 Oct; 35(28):2076-86. PubMed ID: 25178266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a QM/MM force field and molecular mechanics force fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme) in water in relation to the problem of modeling the unfolded peptide backbone in solution.
    Hu H; Elstner M; Hermans J
    Proteins; 2003 Feb; 50(3):451-63. PubMed ID: 12557187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined fragment-based machine learning force field with classical force field and its application in the NMR calculations of macromolecules in solutions.
    Liao K; Dong S; Cheng Z; Li W; Li S
    Phys Chem Chem Phys; 2022 Aug; 24(31):18559-18567. PubMed ID: 35916054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON
    Huang L; Roux B
    J Chem Theory Comput; 2013 Aug; 9(8):. PubMed ID: 24223528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems.
    Böselt L; Thürlemann M; Riniker S
    J Chem Theory Comput; 2021 May; 17(5):2641-2658. PubMed ID: 33818085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme.
    Zhou B; Zhou Y; Xie D
    J Chem Theory Comput; 2023 Feb; 19(4):1157-1169. PubMed ID: 36724190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.