These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37431914)

  • 1. Assessing the performance of approximate density functional theory on 95 experimentally characterized Fe(II) spin crossover complexes.
    Vennelakanti V; Taylor MG; Nandy A; Duan C; Kulik HJ
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the influence of oriented external electric fields on modulating spin-transition temperatures in Fe(II) SCO complexes: a theoretical perspective.
    Tiwari RK; Paul R; Rajaraman G
    Dalton Trans; 2024 Sep; 53(35):14623-14633. PubMed ID: 39162581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional.
    Siig OS; Kepp KP
    J Phys Chem A; 2018 Apr; 122(16):4208-4217. PubMed ID: 29630380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes.
    Verma P; Varga Z; Klein JEMN; Cramer CJ; Que L; Truhlar DG
    Phys Chem Chem Phys; 2017 May; 19(20):13049-13069. PubMed ID: 28484765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Predictions of Spin-Crossover Complex Properties through DFT Calculations with a Local Hybrid Functional.
    Rajpurohit S; Vennelakanti V; Kulik HJ
    J Phys Chem A; 2024 Oct; 128(41):9082-9089. PubMed ID: 39360548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Prediction of the Experimental Transition Temperature of Fe(II) Spin-Crossover Complexes.
    Vennelakanti V; Kilic IB; Terrones GG; Duan C; Kulik HJ
    J Phys Chem A; 2024 Jan; 128(1):204-216. PubMed ID: 38148525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of DFT for C
    Karton A; Waite SL; Page AJ
    J Phys Chem A; 2019 Jan; 123(1):257-266. PubMed ID: 30521343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei.
    Schattenberg CJ; Lehmann M; Bühl M; Kaupp M
    J Chem Theory Comput; 2022 Jan; 18(1):273-292. PubMed ID: 34968062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step and two-step spin-crossover iron(II) complexes of ((2-methylimidazol-4-yl)methylidene)histamine.
    Sato T; Nishi K; Iijima S; Kojima M; Matsumoto N
    Inorg Chem; 2009 Aug; 48(15):7211-29. PubMed ID: 19722691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Big data benchmarking: how do DFT methods across the rungs of Jacob's ladder perform for a dataset of 122k CCSD(T) total atomization energies?
    Karton A
    Phys Chem Chem Phys; 2024 May; 26(20):14594-14606. PubMed ID: 38738470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal spin crossover in Fe(ii) and Fe(iii). Accurate spin state energetics at the solid state.
    Vela S; Fumanal M; Cirera J; Ribas-Arino J
    Phys Chem Chem Phys; 2020 Mar; 22(9):4938-4945. PubMed ID: 32096536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing of Exchange-Correlation Functionals of DFT for a Reliable Description of the Electron Density Distribution in Organic Molecules.
    Domagała M; Jabłoński M; Dubis AT; Zabel M; Pfitzner A; Palusiak M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functionals with broad applicability in chemistry.
    Zhao Y; Truhlar DG
    Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections.
    Radoń M
    Phys Chem Chem Phys; 2024 Jul; 26(26):18182-18195. PubMed ID: 38899797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of liquid water from
    Villard J; Bircher MP; Rothlisberger U
    Chem Sci; 2024 Mar; 15(12):4434-4451. PubMed ID: 38516095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water induced spin-crossover behaviour and magneto-structural correlation in octacyanotungstate(iv)-based iron(ii) complexes.
    Wei RM; Kong M; Cao F; Li J; Pu TC; Yang L; Zhang XL; Song Y
    Dalton Trans; 2016 Nov; 45(46):18643-18652. PubMed ID: 27827477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study of Spin Crossover in 30 Iron Complexes.
    Kepp KP
    Inorg Chem; 2016 Mar; 55(6):2717-27. PubMed ID: 26913489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative Route Triggering Multistep Spin Crossover with Hysteresis in an Iron(II) Family Mediated by Flexible Anion Ordering.
    Hagiwara H; Minoura R; Udagawa T; Mibu K; Okabayashi J
    Inorg Chem; 2020 Jul; 59(14):9866-9880. PubMed ID: 32589413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules.
    Cirera J; Via-Nadal M; Ruiz E
    Inorg Chem; 2018 Nov; 57(22):14097-14105. PubMed ID: 30383364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate calculation of spin-state energy gaps in Fe(III) spin-crossover systems using density functional methods.
    Vidal D; Cirera J; Ribas-Arino J
    Dalton Trans; 2021 Dec; 50(47):17635-17642. PubMed ID: 34806100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.