These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 37431995)
1. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995 [TBL] [Abstract][Full Text] [Related]
2. AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. Li C; Sutherland D; Hammond SA; Yang C; Taho F; Bergman L; Houston S; Warren RL; Wong T; Hoang LMN; Cameron CE; Helbing CC; Birol I BMC Genomics; 2022 Jan; 23(1):77. PubMed ID: 35078402 [TBL] [Abstract][Full Text] [Related]
3. Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616 [TBL] [Abstract][Full Text] [Related]
4. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762 [TBL] [Abstract][Full Text] [Related]
5. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
6. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities. Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638 [TBL] [Abstract][Full Text] [Related]
7. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides. Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544 [TBL] [Abstract][Full Text] [Related]
8. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Suchi SA; Nam KB; Kim YK; Tarek H; Yoo JC Bioprocess Biosyst Eng; 2023 Jun; 46(6):813-828. PubMed ID: 36997801 [TBL] [Abstract][Full Text] [Related]
9. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features. Zhuang J; Gao W; Su R J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833 [TBL] [Abstract][Full Text] [Related]
10. Discovery and Mechanism of Action of a Novel Antimicrobial Peptide from an Earthworm. Wu Y; Deng S; Wang X; Thunders M; Qiu J; Li Y Microbiol Spectr; 2023 Feb; 11(1):e0320622. PubMed ID: 36602379 [TBL] [Abstract][Full Text] [Related]
11. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438 [TBL] [Abstract][Full Text] [Related]
12. Discovery of AMPs from random peptides via deep learning-based model and biological activity validation. Du J; Yang C; Deng Y; Guo H; Gu M; Chen D; Liu X; Huang J; Yan W; Liu J Eur J Med Chem; 2024 Nov; 277():116797. PubMed ID: 39197254 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial efficacy of Cecropin A (1-7)- Melittin and Lactoferricin (17-30) against multi-drug resistant Salmonella Enteritidis. Gourkhede DP; Bhoomika S; Pathak R; Yadav JP; Nishanth D; Vergis J; Malik SVS; Barbuddhe SB; Rawool DB Microb Pathog; 2020 Oct; 147():104405. PubMed ID: 32707313 [TBL] [Abstract][Full Text] [Related]
14. An ensemble deep learning model for predicting minimum inhibitory concentrations of antimicrobial peptides against pathogenic bacteria. Chung CR; Chien CY; Tang Y; Wu LC; Hsu JB; Lu JJ; Lee TY; Bai C; Horng JT iScience; 2024 Sep; 27(9):110718. PubMed ID: 39262770 [TBL] [Abstract][Full Text] [Related]
15. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial peptides designed by computational analysis of proteomes. Monsalve D; Mesa A; Mira LM; Mera C; Orduz S; Branch-Bedoya JW Antonie Van Leeuwenhoek; 2024 Mar; 117(1):55. PubMed ID: 38488950 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266 [TBL] [Abstract][Full Text] [Related]
18. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms. Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial peptides recognition using weighted physicochemical property encoding. Na S; Wannigama DL; Saethang T J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707 [TBL] [Abstract][Full Text] [Related]
20. Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics. Hou X; Li S; Luo Q; Shen G; Wu H; Li M; Liu X; Chen A; Ye M; Zhang Z Appl Microbiol Biotechnol; 2019 Mar; 103(5):2217-2228. PubMed ID: 30623204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]