BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 37432026)

  • 1. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised low-dose CT denoising using bidirectional contrastive network.
    Zhang Y; Zhang R; Cao R; Xu F; Jiang F; Meng J; Ma F; Guo Y; Liu J
    Comput Methods Programs Biomed; 2024 Jun; 251():108206. PubMed ID: 38723435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pediatric evaluations for deep learning CT denoising.
    Nelson BJ; Kc P; Badal A; Jiang L; Masters SC; Zeng R
    Med Phys; 2024 Feb; 51(2):978-990. PubMed ID: 38127330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subjective and objective image quality of low-dose CT images processed using a self-supervised denoising algorithm.
    Kimura Y; Suyama TQ; Shimamura Y; Suzuki J; Watanabe M; Igei H; Otera Y; Kaneko T; Suzukawa M; Matsui H; Kudo H
    Radiol Phys Technol; 2024 Jun; 17(2):367-374. PubMed ID: 38413510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise2Context: Context-assisted learning 3D thin-layer for low-dose CT.
    Zhang Z; Liang X; Zhao W; Xing L
    Med Phys; 2021 Oct; 48(10):5794-5803. PubMed ID: 34287948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale feature aggregation and fusion network with self-supervised multi-level perceptual loss for textures preserving low-dose CT denoising.
    Zhang Y; Wan Z; Wang D; Meng J; Ma F; Guo Y; Liu J; Li G; Liu Y
    Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593821
    [No Abstract]   [Full Text] [Related]  

  • 12. Self-supervised deep learning for joint 3D low-dose PET/CT image denoising.
    Zhao F; Li D; Luo R; Liu M; Jiang X; Hu J
    Comput Biol Med; 2023 Oct; 165():107391. PubMed ID: 37717529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct estimation of the noise power spectrum from patient data to generate synthesized CT noise for denoising network training.
    Han M; Baek J
    Med Phys; 2024 Mar; 51(3):1637-1652. PubMed ID: 38289987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising.
    Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L
    Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis.
    Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A
    Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068
    [No Abstract]   [Full Text] [Related]  

  • 16. Rapid 2D
    Baker RR; Muthurangu V; Rega M; Walsh SB; Steeden JA
    Magn Reson Imaging; 2024 Jul; 110():184-194. PubMed ID: 38642779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sinogram domain.
    Manoj Doss KK; Chen JC
    Med Phys; 2024 Jan; 51(1):209-223. PubMed ID: 37966121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.
    Kang E; Koo HJ; Yang DH; Seo JB; Ye JC
    Med Phys; 2019 Feb; 46(2):550-562. PubMed ID: 30449055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-supervised iterative adaptive network for low-dose CT sinogram recovery.
    Wang L; Meng M; Chen S; Bian Z; Zeng D; Meng D; Ma J
    Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38422540
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.