These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37432074)

  • 1. Self-Growing Organic Materials.
    Xiong X; Wang H; Xue L; Cui J
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202306565. PubMed ID: 37432074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing Strategy for Postmodifying Cross-Linked Polymers' Bulky Size, Shape, and Mechanical Properties.
    Xiong X; Wang S; Xue L; Wang H; Cui J
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):8473-8481. PubMed ID: 35129323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System.
    Zhang B; Zhang W; Zhang Z; Zhang YF; Hingorani H; Liu Z; Liu J; Ge Q
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10328-10336. PubMed ID: 30785262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-growing photonic composites with programmable colors and mechanical properties.
    Xue J; Yin X; Xue L; Zhang C; Dong S; Yang L; Fang Y; Li Y; Li L; Cui J
    Nat Commun; 2022 Dec; 13(1):7823. PubMed ID: 36535934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative Living 4D Printing via Reversible Growth of Polymer Networks.
    Xu X; Fang Z; Jin B; Mu H; Shi Y; Xu Y; Chen G; Zhao Q; Zheng N; Xie T
    Adv Mater; 2023 Apr; 35(16):e2209824. PubMed ID: 36681865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibly growing crosslinked polymers with programmable sizes and properties.
    Zhou X; Zheng Y; Zhang H; Yang L; Cui Y; Krishnan BP; Dong S; Aizenberg M; Xiong X; Hu Y; Aizenberg J; Cui J
    Nat Commun; 2023 Jun; 14(1):3302. PubMed ID: 37280214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Biomedical Applications of Self-healing Hydrogels.
    Liu Y; Hsu SH
    Front Chem; 2018; 6():449. PubMed ID: 30333970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using synthetically modified proteins to make new materials.
    Witus LS; Francis MB
    Acc Chem Res; 2011 Sep; 44(9):774-83. PubMed ID: 21812400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridine coordination chemistry for molecular assemblies on surfaces.
    de Ruiter G; Lahav M; van der Boom ME
    Acc Chem Res; 2014 Dec; 47(12):3407-16. PubMed ID: 25350402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Minderoo-Monaco Commission on Plastics and Human Health.
    Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S
    Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.
    Kuang X; Chen K; Dunn CK; Wu J; Li VCF; Qi HJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7381-7388. PubMed ID: 29400445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends.
    Peng B; Yang Y; Ju T; Cavicchi KA
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12777-12788. PubMed ID: 33297679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy-Driven Self-Healing of Metal Oxides Assisted by Polymer-Inorganic Hybrid Materials.
    Yurkevich O; Modin E; Šarić I; Petravić M; Knez M
    Adv Mater; 2022 Jul; 34(30):e2202989. PubMed ID: 35641441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant advancements of 4D printing in the field of orthopaedics.
    Javaid M; Haleem A
    J Clin Orthop Trauma; 2020 Jul; 11(Suppl 4):S485-S490. PubMed ID: 32774016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing.
    Farhan M; Rudolph T; Nöchel U; Kratz K; Lendlein A
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties.
    Wu SD; Hsu SH
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34530408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.