These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37432424)

  • 1. Solid-liquid phase transition inside van der Waals nanobubbles: an atomistic perspective.
    Korneva M; Zhilyaev P
    Phys Chem Chem Phys; 2023 Jul; 25(28):18788-18796. PubMed ID: 37432424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-gas phase transition of Ar inside graphene nanobubbles on the graphite substrate.
    Zhilyaev P; Iakovlev E; Akhatov I
    Nanotechnology; 2019 May; 30(21):215701. PubMed ID: 30743253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the phase transition inside graphene nanobubbles filled with ethane.
    Iakovlev E; Zhilyaev P; Akhatov I
    Phys Chem Chem Phys; 2019 Aug; 21(33):18099-18104. PubMed ID: 31393481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic study of the solid state inside graphene nanobubbles.
    Iakovlev E; Zhilyaev P; Akhatov I
    Sci Rep; 2017 Dec; 7(1):17906. PubMed ID: 29263360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastable State during Melting and Solid-Solid Phase Transition of [C
    Cao W; Wang Y; Saielli G
    J Phys Chem B; 2018 Jan; 122(1):229-239. PubMed ID: 29200292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Universal Gel Model with Volume Phase Transition.
    Manning GS
    Gels; 2020 Feb; 6(1):. PubMed ID: 32120904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of the shape of graphene nanobubbles on trapped substance.
    Ghorbanfekr-Kalashami H; Vasu KS; Nair RR; Peeters FM; Neek-Amal M
    Nat Commun; 2017 Jun; 8():15844. PubMed ID: 28621311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model of graphene nanobubble: Combining classical density functional and elasticity theories.
    Aslyamov TF; Iakovlev ES; Akhatov IS; Zhilyaev PA
    J Chem Phys; 2020 Feb; 152(5):054705. PubMed ID: 32035456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic Simulation of Shock Wave-Induced Melting in Argon.
    Belonoshko AB
    Science; 1997 Feb; 275(5302):955-7. PubMed ID: 9020073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman Spectroscopic Studies on SO2F2 in Argon Matrices.
    Kornath A
    J Mol Spectrosc; 1998 Mar; 188(1):63-7. PubMed ID: 9480802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translucency of Graphene to van der Waals Forces Applies to Atoms/Molecules with Different Polar Character.
    Presel F; Gijón A; Hernández ER; Lacovig P; Lizzit S; Alfè D; Baraldi A
    ACS Nano; 2019 Oct; 13(10):12230-12241. PubMed ID: 31589408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending-induced delamination of van der Waals solids.
    Koskinen P
    J Phys Condens Matter; 2013 Oct; 25(39):395303. PubMed ID: 23999118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal shape of graphene nanobubbles on metallic substrate.
    Aslyamov T; Zahra KM; Zhilyaev P; Walton AS
    Phys Chem Chem Phys; 2022 Mar; 24(11):6935-6940. PubMed ID: 35254356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coexistence region in the Van der Waals fluid and the liquid-liquid phase transitions.
    Pham DQH; Chwastyk M; Cieplak M
    Front Chem; 2022; 10():1106599. PubMed ID: 36760519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures.
    Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M
    Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered van der Waals Chalcogenides FeAl
    Verchenko VY; Kanibolotskiy AV; Chernoukhov IV; Cherednichenko KA; Bogach AV; Znamenkov KO; Sobolev AV; Glazkova IS; Presniakov IA; Shevelkov AV
    Inorg Chem; 2023 May; 62(19):7557-7565. PubMed ID: 37130007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal shape and pressure inside bubbles appearing in van der Waals heterostructures.
    Khestanova E; Guinea F; Fumagalli L; Geim AK; Grigorieva IV
    Nat Commun; 2016 Aug; 7():12587. PubMed ID: 27557732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificially stacked atomic layers: toward new van der Waals solids.
    Gao G; Gao W; Cannuccia E; Taha-Tijerina J; Balicas L; Mathkar A; Narayanan TN; Liu Z; Gupta BK; Peng J; Yin Y; Rubio A; Ajayan PM
    Nano Lett; 2012 Jul; 12(7):3518-25. PubMed ID: 22731861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-Eutectic Transition via Sublattice Melting in CuInP
    Susner MA; Chyasnavichyus M; Puretzky AA; He Q; Conner BS; Ren Y; Cullen DA; Ganesh P; Shin D; Demir H; McMurray JW; Borisevich AY; Maksymovych P; McGuire MA
    ACS Nano; 2017 Jul; 11(7):7060-7073. PubMed ID: 28686418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave spectra and structure of the argon-cyclopentanone and neon-cyclopentanone van der Waals complexes.
    Lin W; Brooks AH; Minei AJ; Novick SE; Pringle WC
    J Phys Chem A; 2014 Feb; 118(5):856-61. PubMed ID: 24428820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.