These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37432661)

  • 1. Mixture of an ionic liquid and organic solvent at graphene: interface structure and ORR mechanism.
    Pavlov S; Kislenko S
    Phys Chem Chem Phys; 2023 Jul; 25(28):19245-19253. PubMed ID: 37432661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of a mixture of an ionic liquid and organic solvent on oxygen reduction reaction kinetics.
    Pavlov S; Danilova V; Sivakov V; Kislenko S
    Phys Chem Chem Phys; 2022 Jul; 24(27):16746-16754. PubMed ID: 35771039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An all-nanosheet OER/ORR bifunctional electrocatalyst for both aprotic and aqueous Li-O
    Zhang M; Zou L; Yang C; Chen Y; Shen Z; Bo C
    Nanoscale; 2019 Feb; 11(6):2855-2862. PubMed ID: 30681684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.
    Elia GA; Hassoun J; Kwak WJ; Sun YK; Scrosati B; Mueller F; Bresser D; Passerini S; Oberhumer P; Tsiouvaras N; Reiter J
    Nano Lett; 2014 Nov; 14(11):6572-7. PubMed ID: 25329836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen Redox Reaction in Ionic Liquid and Ionic Liquid-like Based Electrolytes: A Scanning Electrochemical Microscopy Study.
    Ruggeri I; Arbizzani C; Rapino S; Soavi F
    J Phys Chem Lett; 2019 Jun; 10(12):3333-3338. PubMed ID: 31141369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving Low Overpotential Li-O₂ Battery Operations by Li₂O₂ Decomposition through One-Electron Processes.
    Xie J; Dong Q; Madden I; Yao X; Cheng Q; Dornath P; Fan W; Wang D
    Nano Lett; 2015 Dec; 15(12):8371-6. PubMed ID: 26583874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li
    Liu L; Liu Y; Wang C; Peng X; Fang W; Hou Y; Wang J; Ye J; Wu Y
    Small Methods; 2022 Jan; 6(1):e2101280. PubMed ID: 35041287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Liquid Electrolyte with Weak Solvating Molecule Regulation for Stable Li Deposition in High-Performance Li-O
    Cai Y; Hou Y; Lu Y; Zhang Q; Yan Z; Chen J
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218014. PubMed ID: 36738292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte.
    Ulissi U; Elia GA; Jeong S; Mueller F; Reiter J; Tsiouvaras N; Sun YK; Scrosati B; Passerini S; Hassoun J
    ChemSusChem; 2018 Jan; 11(1):229-236. PubMed ID: 28960847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carbon surface topography on the electrode/electrolyte interface structure and relevance to Li-air batteries.
    Pavlov SV; Kislenko SA
    Phys Chem Chem Phys; 2016 Nov; 18(44):30830-30836. PubMed ID: 27801476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cage Dynamics-Mediated High Ionic Transport in Li-O
    Dhananjay ; Mallik BS
    J Phys Chem B; 2023 Apr; 127(13):2991-3000. PubMed ID: 36960946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilizing Li-O
    Wu X; Wang X; Li Z; Chen L; Zhou S; Zhang H; Qiao Y; Yue H; Huang L; Sun SG
    Nano Lett; 2022 Jun; 22(12):4985-4992. PubMed ID: 35686884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Li-O
    Kwon HM; Thomas ML; Tatara R; Oda Y; Kobayashi Y; Nakanishi A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6014-6021. PubMed ID: 28121136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries.
    Asadi M; Kumar B; Liu C; Phillips P; Yasaei P; Behranginia A; Zapol P; Klie RF; Curtiss LA; Salehi-Khojin A
    ACS Nano; 2016 Feb; 10(2):2167-75. PubMed ID: 26789516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous Materials Applied in Nonaqueous Li-O
    Wang H; Wang X; Li M; Zheng L; Guan D; Huang X; Xu J; Yu J
    Adv Mater; 2020 Nov; 32(44):e2002559. PubMed ID: 32715511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Oxygen Mass Transport in Rechargeable Li/O2 Batteries Operating with Ionic Liquids.
    Monaco S; Soavi F; Mastragostino M
    J Phys Chem Lett; 2013 May; 4(9):1379-82. PubMed ID: 26282288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.