These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 37432731)
1. Chemical Doping of Organic and Coordination Polymers for Thermoelectric and Spintronic Applications: A Theoretical Understanding. Wang D; Yu H; Shi W; Xu C Acc Chem Res; 2023 Aug; 56(16):2127-2138. PubMed ID: 37432731 [TBL] [Abstract][Full Text] [Related]
2. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Lu Y; Wang JY; Pei J Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131 [TBL] [Abstract][Full Text] [Related]
3. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611 [TBL] [Abstract][Full Text] [Related]
4. Unravelling Doping Effects on PEDOT at the Molecular Level: From Geometry to Thermoelectric Transport Properties. Shi W; Zhao T; Xi J; Wang D; Shuai Z J Am Chem Soc; 2015 Oct; 137(40):12929-38. PubMed ID: 26406937 [TBL] [Abstract][Full Text] [Related]
5. The Critical Role of Dopant Cations in Electrical Conductivity and Thermoelectric Performance of n-Doped Polymers. Lu Y; Yu ZD; Liu Y; Ding YF; Yang CY; Yao ZF; Wang ZY; You HY; Cheng XF; Tang B; Wang JY; Pei J J Am Chem Soc; 2020 Sep; 142(36):15340-15348. PubMed ID: 32786750 [TBL] [Abstract][Full Text] [Related]
6. Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films. Boyle CJ; Upadhyaya M; Wang P; Renna LA; Lu-Díaz M; Pyo Jeong S; Hight-Huf N; Korugic-Karasz L; Barnes MD; Aksamija Z; Venkataraman D Nat Commun; 2019 Jul; 10(1):2827. PubMed ID: 31270313 [TBL] [Abstract][Full Text] [Related]
7. Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping. Kim J; Suh EH; Lee K; Kim G; Kim H; Jang J; Jung IH Nanomaterials (Basel); 2023 Apr; 13(7):. PubMed ID: 37049379 [TBL] [Abstract][Full Text] [Related]
8. Metal-Free Magnetism in Chemically Doped Covalent Organic Frameworks. Yu H; Wang D J Am Chem Soc; 2020 Jun; 142(25):11013-11021. PubMed ID: 32423206 [TBL] [Abstract][Full Text] [Related]
9. Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder in Conjugated Polymers. Upadhyaya M; Lu-Díaz M; Samanta S; Abdullah M; Dusoe K; Kittilstved KR; Venkataraman D; Akšamija Z Adv Sci (Weinh); 2021 Oct; 8(19):e2101087. PubMed ID: 34382366 [TBL] [Abstract][Full Text] [Related]
10. Chemical doping of organic semiconductors for thermoelectric applications. Zhao W; Ding J; Zou Y; Di CA; Zhu D Chem Soc Rev; 2020 Oct; 49(20):7210-7228. PubMed ID: 32975251 [TBL] [Abstract][Full Text] [Related]
11. Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Ghosh R; Paesani F Chem Sci; 2021 May; 12(24):8373-8384. PubMed ID: 34221318 [TBL] [Abstract][Full Text] [Related]
12. Combination of Counterion Size and Doping Concentration Determines the Electronic and Thermoelectric Properties of Semiconducting Polymers. Baustert KN; Bombile JH; Rahman MT; Yusuf AO; Li R; Huckaba AJ; Risko C; Graham KR Adv Mater; 2024 Jul; 36(29):e2313863. PubMed ID: 38687901 [TBL] [Abstract][Full Text] [Related]
13. Novel Dithienopyrrole-Based Conjugated Copolymers: Importance of Backbone Planarity in Achieving High Electrical Conductivity and Thermoelectric Performance. Lee H; Li H; Kim YS; Park SM; Lee D; Lee S; Lee HS; Kim YH; Kang B Macromol Rapid Commun; 2022 Oct; 43(19):e2200277. PubMed ID: 35611445 [TBL] [Abstract][Full Text] [Related]
14. High Thermoelectric Performance of In Yin X; Liu JY; Chen L; Wu LM Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668 [TBL] [Abstract][Full Text] [Related]
15. Self-Doping and Self-Acid-Doping of Conjugated Polymer Bioelectronics: The Case for Accuracy in Nomenclature. Fidanovski K; Gu M; Travaglini L; Lauto A; Mawad D Adv Healthc Mater; 2024 Sep; 13(24):e2302354. PubMed ID: 37883783 [TBL] [Abstract][Full Text] [Related]
16. Boosting the Seebeck Coefficient for Organic Coordination Polymers: Role of Doping-Induced Polaron Band Formation. Liu Y; Shi W; Zhao T; Wang D; Shuai Z J Phys Chem Lett; 2019 May; 10(10):2493-2499. PubMed ID: 31026169 [TBL] [Abstract][Full Text] [Related]
17. Persistent Conjugated Backbone and Disordered Lamellar Packing Impart Polymers with Efficient n-Doping and High Conductivities. Lu Y; Yu ZD; Un HI; Yao ZF; You HY; Jin W; Li L; Wang ZY; Dong BW; Barlow S; Longhi E; Di CA; Zhu D; Wang JY; Silva C; Marder SR; Pei J Adv Mater; 2021 Jan; 33(2):e2005946. PubMed ID: 33251668 [TBL] [Abstract][Full Text] [Related]
18. High Efficiency Doping of Conjugated Polymer for Investigation of Intercorrelation of Thermoelectric Effects with Electrical and Morphological Properties. Yoon SE; Kang Y; Noh SY; Park J; Lee SY; Park J; Lee DW; Whang DR; Kim T; Kim GH; Seo H; Kim BG; Kim JH ACS Appl Mater Interfaces; 2020 Jan; 12(1):1151-1158. PubMed ID: 31808674 [TBL] [Abstract][Full Text] [Related]
19. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks. Jiang W; Ni X; Liu F Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497 [TBL] [Abstract][Full Text] [Related]
20. Molecular Dopant-Dependent Charge Transport in Surface-Charge-Transfer-Doped Tungsten Diselenide Field Effect Transistors. Kim JK; Cho K; Jang J; Baek KY; Kim J; Seo J; Song M; Shin J; Kim J; Parkin SSP; Lee JH; Kang K; Lee T Adv Mater; 2021 Nov; 33(44):e2101598. PubMed ID: 34533851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]