BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37432807)

  • 1. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning.
    Pak DH; Liu M; Kim T; Liang L; Caballero A; Onofrey J; Ahn SS; Xu Y; McKay R; Sun W; Gleason R; Duncan JS
    IEEE Trans Med Imaging; 2024 Jan; 43(1):203-215. PubMed ID: 37432807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep-learning approach for direct whole-heart mesh reconstruction.
    Kong F; Wilson N; Shadden S
    Med Image Anal; 2021 Dec; 74():102222. PubMed ID: 34543913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Whole Heart Mesh Generation From Patient Images for Computational Simulations.
    Kong F; Shadden SC
    IEEE Trans Med Imaging; 2023 Feb; 42(2):533-545. PubMed ID: 36327186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LinFlo-Net: A Two-Stage Deep Learning Method to Generate Simulation Ready Meshes of the Heart.
    Narayanan A; Kong F; Shadden S
    J Biomech Eng; 2024 Jul; 146(7):. PubMed ID: 38258957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust automatic hexahedral cartilage meshing framework enables population-based computational studies of the knee.
    Gibbons KD; Malbouby V; Alvarez O; Fitzpatrick CK
    Front Bioeng Biotechnol; 2022; 10():1059003. PubMed ID: 36568304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Order Cardiomyopathy Human Heart Model and Mesh Generation.
    Mohammadi F; Shontz SM; Linte CA
    Comput Cardiol (2010); 2021 Sep; 2021():. PubMed ID: 35647206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous meshing and biomechanical modeling of human spine.
    Teo JC; Chui CK; Wang ZL; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH
    Med Eng Phys; 2007 Mar; 29(2):277-90. PubMed ID: 16679044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
    Ramme AJ; Shivanna KH; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2011 Oct; 14(10):893-904. PubMed ID: 20924860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network-based left ventricle geometry prediction from CMR images with application in biomechanics.
    Romaszko L; Borowska A; Lazarus A; Dalton D; Berry C; Luo X; Husmeier D; Gao H
    Artif Intell Med; 2021 Sep; 119():102140. PubMed ID: 34531009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning.
    Lampen N; Kim D; Fang X; Xu X; Kuang T; Deng HH; Barber JC; Gateno J; Xia J; Yan P
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):945-952. PubMed ID: 35362849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open-Full-Jaw: An open-access dataset and pipeline for finite element models of human jaw.
    Gholamalizadeh T; Moshfeghifar F; Ferguson Z; Schneider T; Panozzo D; Darkner S; Makaremi M; Chan F; Søndergaard PL; Erleben K
    Comput Methods Programs Biomed; 2022 Sep; 224():107009. PubMed ID: 35872385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures.
    Couteau B; Payan Y; Lavallée S
    J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function.
    Fedele M; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3435. PubMed ID: 33415829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.
    Ghaffari M; Tangen K; Alaraj A; Du X; Charbel FT; Linninger AA
    Comput Biol Med; 2017 Dec; 91():353-365. PubMed ID: 29126049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated finite element meshing of the lumbar spine: Verification and validation with 18 specimen-specific models.
    Campbell JQ; Coombs DJ; Rao M; Rullkoetter PJ; Petrella AJ
    J Biomech; 2016 Sep; 49(13):2669-2676. PubMed ID: 27291694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images.
    Liang L; Kong F; Martin C; Pham T; Wang Q; Duncan J; Sun W
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27557429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases.
    Bucki M; Lobos C; Payan Y
    Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.