These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37432807)

  • 21. A framework for biomechanics simulations using four-chamber cardiac models.
    Jafari A; Pszczolkowski E; Krishnamurthy A
    J Biomech; 2019 Jun; 91():92-101. PubMed ID: 31155211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated subject-specific, hexahedral mesh generation via image registration.
    Ji S; Ford JC; Greenwald RM; Beckwith JG; Paulsen KD; Flashman LA; McAllister TW
    Finite Elem Anal Des; 2011 Oct; 47(10):1178-1185. PubMed ID: 21731153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.
    Raut SS; Liu P; Finol EA
    J Biomech; 2015 Jul; 48(10):1972-81. PubMed ID: 25976018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards the simulation of active cardiac mechanics using a smoothed finite element method.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2021 Jan; 115():110153. PubMed ID: 33388486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LibHip: An open-access hip joint model repository suitable for finite element method simulation.
    Moshfeghifar F; Gholamalizadeh T; Ferguson Z; Schneider T; Nielsen MB; Panozzo D; Darkner S; Erleben K
    Comput Methods Programs Biomed; 2022 Nov; 226():107140. PubMed ID: 36162245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive generation of multimaterial grids from imaging data for biomedical Lagrangian fluid-structure simulations.
    Carson JP; Kuprat AP; Jiao X; Dyedov V; Del Pin F; Guccione JM; Ratcliffe MB; Einstein DR
    Biomech Model Mechanobiol; 2010 Apr; 9(2):187-201. PubMed ID: 19727874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.
    van Dam PM; Gordon JP; Laks MM; Boyle NG
    J Electrocardiol; 2015; 48(6):959-65. PubMed ID: 26381797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical 3-D finite element modeling of the human breast using MRI data.
    Samani A; Bishop J; Yaffe MJ; Plewes DB
    IEEE Trans Med Imaging; 2001 Apr; 20(4):271-9. PubMed ID: 11370894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera.
    Jia X; Liao S; Duan X; Zheng W; Zou B
    Biomed Res Int; 2017; 2017():6073059. PubMed ID: 28271067
    [No Abstract]   [Full Text] [Related]  

  • 33. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.
    Zhang X; Kim D; Shen S; Yuan P; Liu S; Tang Z; Zhang G; Zhou X; Gateno J; Liebschner MAK; Xia JJ
    Biomech Model Mechanobiol; 2018 Apr; 17(2):387-402. PubMed ID: 29027022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time liver motion estimation via deep learning-based angle-agnostic X-ray imaging.
    Shao HC; Li Y; Wang J; Jiang S; Zhang Y
    Med Phys; 2023 Nov; 50(11):6649-6662. PubMed ID: 37922461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves.
    Balu A; Nallagonda S; Xu F; Krishnamurthy A; Hsu MC; Sarkar S
    Sci Rep; 2019 Dec; 9(1):18560. PubMed ID: 31811244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adaptive meshing technique applied to an orthopaedic finite element contact problem.
    Roarty CM; Grosland NM
    Iowa Orthop J; 2004; 24():21-9. PubMed ID: 15296201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hexahedral meshing of subject-specific anatomic structures using mapped building blocks.
    Kallemeyn NA; Natarajan A; Magnotta VA; Grosland NM
    Comput Methods Biomech Biomed Engin; 2013; 16(6):602-11. PubMed ID: 22185480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.