These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37432843)

  • 1. Probing the Ion Transport Properties of Ultrashort Carbon Nanotubes Integrated with Supported Lipid Bilayers via Electrochemical Analysis.
    Park Y; Hong M; Kim T; Na H; Park S; Kim YJ; Kim J; Choung YH; Kim K
    J Phys Chem B; 2023 Jul; 127(28):6316-6324. PubMed ID: 37432843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy.
    Zhang Y; Tunuguntla RH; Choi PO; Noy A
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study.
    Yao YC; Li Z; Gillen AJ; Yosinski S; Reed MA; Noy A
    J Chem Phys; 2021 May; 154(20):204704. PubMed ID: 34241182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) Study.
    Tran IC; Tunuguntla RH; Kim K; Lee JR; Willey TM; Weiss TM; Noy A; van Buuren T
    Nano Lett; 2016 Jul; 16(7):4019-24. PubMed ID: 27322135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes.
    Yi P; Chen KL
    Environ Sci Technol; 2013 Jun; 47(11):5711-9. PubMed ID: 23647313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes.
    Sanborn JR; Chen X; Yao YC; Hammons JA; Tunuguntla RH; Zhang Y; Newcomb CC; Soltis JA; De Yoreo JJ; Van Buuren A; Parikh AN; Noy A
    Adv Mater; 2018 Dec; 30(51):e1803355. PubMed ID: 30368926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins.
    Tunuguntla RH; Henley RY; Yao YC; Pham TA; Wanunu M; Noy A
    Science; 2017 Aug; 357(6353):792-796. PubMed ID: 28839070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
    Hemmatian Z; Tunuguntla RH; Noy A; Rolandi M
    PLoS One; 2019; 14(2):e0212197. PubMed ID: 30794578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins.
    Tunuguntla RH; Escalada A; A Frolov V; Noy A
    Nat Protoc; 2016 Oct; 11(10):2029-2047. PubMed ID: 27658016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sonochemical Synthesis and Ion Transport Properties of Surfactant-Stabilized Carbon Nanotube Porins.
    Zhao S; Gillen AJ; Li Y; Noy A
    J Phys Chem Lett; 2023 Oct; 14(41):9372-9376. PubMed ID: 37823530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane fusion and drug delivery with carbon nanotube porins.
    Ho NT; Siggel M; Camacho KV; Bhaskara RM; Hicks JM; Yao YC; Zhang Y; Köfinger J; Hummer G; Noy A
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors.
    Tripathi P; Shuai L; Joshi H; Yamazaki H; Fowle WH; Aksimentiev A; Fenniri H; Wanunu M
    J Am Chem Soc; 2020 Jan; 142(4):1680-1685. PubMed ID: 31913034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-Assembly of Carbon Nanotube Porins into Biomimetic Peptoid Membranes.
    Zhang S; Hettige JJ; Li Y; Jian T; Yang W; Yao YC; Zheng R; Lin Z; Tao J; De Yoreo JJ; Baer M; Noy A; Chen CL
    Small; 2023 May; 19(21):e2206810. PubMed ID: 36811318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance analysis of ion transport through gramicidin channels in supported lipid bilayers.
    Vallejo AE; Gervasi CA
    Bioelectrochemistry; 2002 Jul; 57(1):1-7. PubMed ID: 12049750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.