These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37432855)

  • 1. Protocol to expand and CRISPR-Cas9 genomic edit murine MAIT cells for subsequent in vivo studies.
    du Halgouet A; Darbois A; Alphonse A; Yvorra T; Colombeau L; Rodriguez R; Lantz O; Salou M
    STAR Protoc; 2023 Sep; 4(3):102419. PubMed ID: 37432855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system.
    Farooq U; Notani D
    STAR Protoc; 2021 Dec; 2(4):100857. PubMed ID: 34746853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized protocol to generate genome-wide inactivated Cas9-expressing murine T cells.
    Laprie-Sentenac M; Cretet-Rodeschini C; Menger L
    STAR Protoc; 2023 Mar; 4(1):101922. PubMed ID: 36516053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to target a promoter region in human embryonic kidney cells using the CRISPR-dCas9 system for single-locus proteomics.
    Alkhayer R; Ponath V; Pogge von Strandmann E
    STAR Protoc; 2024 Jun; 5(2):103045. PubMed ID: 38691460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-induced gene knockout in zebrafish.
    Medishetti R; Balamurugan K; Yadavalli K; Rani R; Sevilimedu A; Challa AK; Parsa K; Chatti K
    STAR Protoc; 2022 Dec; 3(4):101779. PubMed ID: 36317180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9-mediated insertion of a short artificial intron for the generation of conditional alleles in mice.
    Cassidy A; Pelletier S
    STAR Protoc; 2023 Mar; 4(1):102116. PubMed ID: 36853660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for in vivo CRISPR screening using selective CRISPR antigen removal lentiviral vectors.
    Lane-Reticker SK; Kessler EA; Muscato AJ; Kim SY; Doench JG; Yates KB; Manguso RT; Dubrot J
    STAR Protoc; 2023 Mar; 4(1):102082. PubMed ID: 36861834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for genome-scale CRISPR screening in engineered lineage reporter hPSCs to study cell fate determination.
    Zhou Z; Ma L; Zhang X
    STAR Protoc; 2021 Jun; 2(2):100548. PubMed ID: 34095862
    [No Abstract]   [Full Text] [Related]  

  • 9. Optimized protocols for efficient gene editing in mouse hepatocytes
    Chen Y; Ding Q
    STAR Protoc; 2022 Mar; 3(1):101062. PubMed ID: 35005644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-step CRISPR-Cas9 protocol for transposable element deletion in D. melanogaster natural populations.
    Merenciano M; Aguilera L; González J
    STAR Protoc; 2023 Sep; 4(3):102501. PubMed ID: 37590151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activating Mucosal-Associated Invariant T Cells Induces a Broad Antitumor Response.
    Ruf B; Catania VV; Wabitsch S; Ma C; Diggs LP; Zhang Q; Heinrich B; Subramanyam V; Cui LL; Pouzolles M; Evans CN; Chari R; Sakai S; Oh S; Barry CE; Barber DL; Greten TF
    Cancer Immunol Res; 2021 Sep; 9(9):1024-1034. PubMed ID: 34193462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol for gene characterization in Aspergillus niger using 5S rRNA-CRISPR-Cas9-mediated Tet-on inducible promoter exchange.
    Zheng X; Cairns T; Zheng P; Meyer V; Sun J
    STAR Protoc; 2022 Dec; 3(4):101838. PubMed ID: 36595926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol of CRISPR-Cas9 knockout screens for identifying ferroptosis regulators.
    Yang X; Duan S; Li Z; Wang Z; Kon N; Zhang Z; Gu W
    STAR Protoc; 2023 Dec; 4(4):102762. PubMed ID: 38048220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocols for transgenesis at a safe harbor site in the Xenopus laevis genome using CRISPR-Cas9.
    Shibata Y; Okumura A; Mochii M; Suzuki KT
    STAR Protoc; 2023 Sep; 4(3):102382. PubMed ID: 37389994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 Ribonucleoprotein-Mediated Genomic Editing in Primary Innate Immune Cells.
    Hildreth AD; Riggan L; O'Sullivan TE
    STAR Protoc; 2020 Dec; 1(3):100113. PubMed ID: 33377009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of gene-of-interest double allele knockout clones in primary human T cells by CRISPR.
    Wu L; Tan JC; Gascoigne NRJ
    STAR Protoc; 2023 Sep; 4(3):102445. PubMed ID: 37432856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol for performing pooled CRISPR-Cas9 loss-of-function screens.
    Mathiowetz AJ; Roberts MA; Morgens DW; Olzmann JA; Li Z
    STAR Protoc; 2023 Mar; 4(2):102201. PubMed ID: 37000620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro CRISPR-Cas12a-mediated protocol for direct cloning of large DNA fragments.
    Zeng X; Wang S; Liang M; Wang W; Jiang Y; Xu F; Liu L; Yan H; Tong Y; Zhang L; Tan GY
    STAR Protoc; 2023 Sep; 4(3):102435. PubMed ID: 37432853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of epitope tag knock-in mice with CRISPR-Cas9 to study the function of endogenous proteins.
    Zhang Z
    STAR Protoc; 2023 Sep; 4(3):102518. PubMed ID: 37585297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for generation of humanized HCC mouse model and cancer-driver mutations using CRISPR-Cas9.
    Zhu Y; Tahara SM; Tsukamoto H; Machida K
    STAR Protoc; 2023 Dec; 4(4):102389. PubMed ID: 38103196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.