These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Human-to-Robot Handover Based on Reinforcement Learning. Kim M; Yang S; Kim B; Kim J; Kim D Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409314 [TBL] [Abstract][Full Text] [Related]
4. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment. Vukelić M; Bui M; Vorreuther A; Lingelbach K Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482 [TBL] [Abstract][Full Text] [Related]
5. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning. Modares H; Ranatunga I; Lewis FL; Popa DO IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055 [TBL] [Abstract][Full Text] [Related]
6. Human-robot skills transfer interfaces for a flexible surgical robot. Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285 [TBL] [Abstract][Full Text] [Related]
7. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning. Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740 [TBL] [Abstract][Full Text] [Related]
8. Classifying human emotions in HRI: applying global optimization model to EEG brain signals. Staffa M; D'Errico L; Sansalone S; Alimardani M Front Neurorobot; 2023; 17():1191127. PubMed ID: 37881515 [TBL] [Abstract][Full Text] [Related]
9. Model predictive control for constrained robot manipulator visual servoing tuned by reinforcement learning. Li J; Peng X; Li B; Sreeram V; Wu J; Chen Z; Li M Math Biosci Eng; 2023 Apr; 20(6):10495-10513. PubMed ID: 37322945 [TBL] [Abstract][Full Text] [Related]
10. Task partitioning in a robot swarm: object retrieval as a sequence of subtasks with direct object transfer. Pini G; Brutschy A; Scheidler A; Dorigo M; Birattari M Artif Life; 2014; 20(3):291-317. PubMed ID: 24730767 [TBL] [Abstract][Full Text] [Related]
11. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Adamides G; Katsanos C; Parmet Y; Christou G; Xenos M; Hadzilacos T; Edan Y Appl Ergon; 2017 Jul; 62():237-246. PubMed ID: 28411734 [TBL] [Abstract][Full Text] [Related]
12. A Human-Following Motion Planning and Control Scheme for Collaborative Robots Based on Human Motion Prediction. Khawaja FI; Kanazawa A; Kinugawa J; Kosuge K Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960323 [TBL] [Abstract][Full Text] [Related]
13. A search and rescue robot search method based on flower pollination algorithm and Q-learning fusion algorithm. Hao B; Zhao J; Du H; Wang Q; Yuan Q; Zhao S PLoS One; 2023; 18(3):e0283751. PubMed ID: 36996142 [TBL] [Abstract][Full Text] [Related]
14. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review. Nocentini O; Kim J; Bashir ZM; Cavallo F J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473 [TBL] [Abstract][Full Text] [Related]
15. Let's Work Together: A Meta-Analysis on Robot Design Features That Enable Successful Human-Robot Interaction at Work. Ötting SK; Masjutin L; Steil JJ; Maier GW Hum Factors; 2022 Sep; 64(6):1027-1050. PubMed ID: 33176488 [TBL] [Abstract][Full Text] [Related]
16. Impedance Variation and Learning Strategies in Human-Robot Interaction. Sharifi M; Zakerimanesh A; Mehr JK; Torabi A; Mushahwar VK; Tavakoli M IEEE Trans Cybern; 2022 Jul; 52(7):6462-6475. PubMed ID: 33449901 [TBL] [Abstract][Full Text] [Related]
17. Robot Assistance in Dynamic Smart Environments-A Hierarchical Continual Planning in the Now Framework. Harman H; Chintamani K; Simoens P Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703424 [TBL] [Abstract][Full Text] [Related]
18. The Grasp Strategy of a Robot Passer Influences Performance and Quality of the Robot-Human Object Handover. Ortenzi V; Cini F; Pardi T; Marturi N; Stolkin R; Corke P; Controzzi M Front Robot AI; 2020; 7():542406. PubMed ID: 33501313 [TBL] [Abstract][Full Text] [Related]
19. Development of a Real-Time Human-Robot Collaborative System Based on 1 kHz Visual Feedback Control and Its Application to a Peg-in-Hole Task. Yamakawa Y; Matsui Y; Ishikawa M Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33478053 [TBL] [Abstract][Full Text] [Related]
20. A Resilient and Effective Task Scheduling Approach for Industrial Human-Robot Collaboration. Pupa A; Van Dijk W; Brekelmans C; Secchi C Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]