These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37433035)

  • 1. New Insights on Singlet Oxygen Release from Li-Air Battery Cathode: Periodic DFT Versus CASPT2 Embedded Cluster Calculations.
    Fasulo F; Massaro A; Muñoz-García AB; Pavone M
    J Chem Theory Comput; 2023 Aug; 19(15):5210-5220. PubMed ID: 37433035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in understanding of the mechanism and control of Li
    Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W
    Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quenching singlet oxygen via intersystem crossing for a stable Li-O
    Jiang Z; Huang Y; Zhu Z; Gao S; Lv Q; Li F
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2202835119. PubMed ID: 35969765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions.
    Shu C; Wang J; Long J; Liu HK; Dou SX
    Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.
    Wandt J; Jakes P; Granwehr J; Gasteiger HA; Eichel RA
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6892-5. PubMed ID: 27145532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relieving the "Sudden Death" of Li-O
    Guo L; Wang J; Gu F; Ma L; Zhao Z; Liu J; Peng Z
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14753-14758. PubMed ID: 30932476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stable cathode for the aprotic Li-O2 battery.
    Ottakam Thotiyl MM; Freunberger SA; Peng Z; Chen Y; Liu Z; Bruce PG
    Nat Mater; 2013 Nov; 12(11):1050-6. PubMed ID: 23995325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of toroidal Li
    Wu M; Kim DY; Park H; Cho KM; Kim JY; Kim SJ; Choi S; Kang Y; Kim J; Jung HT
    RSC Adv; 2019 Dec; 9(70):41120-41125. PubMed ID: 35540088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the reaction mechanisms of Li-O
    Luo L; Liu B; Song S; Xu W; Zhang JG; Wang C
    Nat Nanotechnol; 2017 Jul; 12(6):535-539. PubMed ID: 28346458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMSO-Li2O2 Interface in the Rechargeable Li-O2 Battery Cathode: Theoretical and Experimental Perspectives on Stability.
    Schroeder MA; Kumar N; Pearse AJ; Liu C; Lee SB; Rubloff GW; Leung K; Noked M
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11402-11. PubMed ID: 25945948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lithium-oxygen battery based on lithium superoxide.
    Lu J; Lee YJ; Luo X; Lau KC; Asadi M; Wang HH; Brombosz S; Wen J; Zhai D; Chen Z; Miller DJ; Jeong YS; Park JB; Fang ZZ; Kumar B; Salehi-Khojin A; Sun YK; Curtiss LA; Amine K
    Nature; 2016 Jan; 529(7586):377-82. PubMed ID: 26751057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Detection of the Superoxide Anion as a Stable Intermediate in the Electroreduction of Oxygen in a Non-Aqueous Electrolyte Containing Phenol as a Proton Source.
    Peng Z; Chen Y; Bruce PG; Xu Y
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8165-8. PubMed ID: 26013064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries.
    Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S
    Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why charging Li-air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation.
    Ahn S; Zor C; Yang S; Lagnoni M; Dewar D; Nimmo T; Chau C; Jenkins M; Kibler AJ; Pateman A; Rees GJ; Gao X; Adamson P; Grobert N; Bertei A; Johnson LR; Bruce PG
    Nat Chem; 2023 Jul; 15(7):1022-1029. PubMed ID: 37264102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE
    J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical evidence of water serving as a promoter for lithium superoxide disproportionation in Li-O
    Shan N; Redfern PC; Ngo AT; Zapol P; Markovic N; Curtiss LA
    Phys Chem Chem Phys; 2021 May; 23(17):10440-10447. PubMed ID: 33890602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries.
    Kavalsky L; Mukherjee S; Singh CV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction.
    Ganapathy S; Adams BD; Stenou G; Anastasaki MS; Goubitz K; Miao XF; Nazar LF; Wagemaker M
    J Am Chem Soc; 2014 Nov; 136(46):16335-44. PubMed ID: 25341076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.