These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37433096)
1. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096 [TBL] [Abstract][Full Text] [Related]
2. Engineered Environment-Friendly Colloidal Core/Shell Quantum Dots for High-Efficiency Solar-Driven Photoelectrochemical Hydrogen Evolution. Long Z; Tong X; Wang R; Channa AI; Li X; You Y; Xia L; Cai M; Zhao H; Wang ZM ChemSusChem; 2022 May; 15(10):e202200346. PubMed ID: 35319829 [TBL] [Abstract][Full Text] [Related]
3. Ultrafast Charge Carrier Dynamics in InP/ZnSe/ZnS Core/Shell/Shell Quantum Dots. Zeng S; Li Z; Tan W; Si J; Li Y; Hou X Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364592 [TBL] [Abstract][Full Text] [Related]
4. Engineering Brightness Matched Indium Phosphide Quantum Dots. Toufanian R; Chern M; Kong VH; Dennis AM Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920 [TBL] [Abstract][Full Text] [Related]
5. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes. Wu Q; Cao F; Wang S; Wang Y; Sun Z; Feng J; Liu Y; Wang L; Cao Q; Li Y; Wei B; Wong WY; Yang X Adv Sci (Weinh); 2022 Jul; 9(21):e2200959. PubMed ID: 35618484 [TBL] [Abstract][Full Text] [Related]
6. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Chen Y; Wang R; Kuang Y; Bian Y; Chen F; Shen H; Chi Z; Ran X; Guo L Nanoscale; 2023 Nov; 15(46):18920-18927. PubMed ID: 37975758 [TBL] [Abstract][Full Text] [Related]
7. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots. Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352 [TBL] [Abstract][Full Text] [Related]
8. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144 [TBL] [Abstract][Full Text] [Related]
9. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Navarro-Pardo F; Zhao H; Wang ZM; Rosei F Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851 [TBL] [Abstract][Full Text] [Related]
10. Tailoring the interfacial structure of colloidal "giant" quantum dots for optoelectronic applications. Zhao H; Liu J; Vidal F; Vomiero A; Rosei F Nanoscale; 2018 Sep; 10(36):17189-17197. PubMed ID: 30191225 [TBL] [Abstract][Full Text] [Related]
11. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control. Park J; Won YH; Han Y; Kim HM; Jang E; Kim D Small; 2022 Feb; 18(8):e2105492. PubMed ID: 34889031 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010 [TBL] [Abstract][Full Text] [Related]
13. Guilty as Charged: The Role of Undercoordinated Indium in Electron-Charged Indium Phosphide Quantum Dots. Stam M; du Fossé I; Infante I; Houtepen AJ ACS Nano; 2023 Sep; 17(18):18576-18583. PubMed ID: 37712414 [TBL] [Abstract][Full Text] [Related]
14. Sensibilization of p-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction. Lu C; Drichel A; Chen J; Enders F; Rokicińska A; Kuśtrowski P; Dronskowski R; Boldt K; Slabon A Nanoscale; 2021 Jan; 13(2):869-877. PubMed ID: 33355569 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters. Jang EP; Han CY; Lim SW; Jo JH; Jo DY; Lee SH; Yoon SY; Yang H ACS Appl Mater Interfaces; 2019 Dec; 11(49):46062-46069. PubMed ID: 31746194 [TBL] [Abstract][Full Text] [Related]
16. Manipulating the Optoelectronic Properties of Quasi-type II CuInS Wang C; Tong X; Wang W; Xu JY; Besteiro LV; Channa AI; Lin F; Wu J; Wang Q; Govorov AO; Vomiero A; Wang ZM ACS Appl Mater Interfaces; 2020 Aug; 12(32):36277-36286. PubMed ID: 32805789 [TBL] [Abstract][Full Text] [Related]
18. Advanced Interface Engineering in Gradient Core/Shell Quantum Dots Enables Efficient Photoelectrochemical Hydrogen Evolution. Zhang H; Liu J; Besteiro LV; Selopal GS; Zhao Z; Sun S; Rosei F Small; 2024 May; 20(22):e2306203. PubMed ID: 38128031 [TBL] [Abstract][Full Text] [Related]
19. Suppressing the Cation Exchange at the Core/Shell Interface of InP Quantum Dots by a Selenium Shielding Layer Enables Efficient Green Light-Emitting Diodes. Sun Z; Wu Q; Wang S; Cao F; Wang Y; Li L; Wang H; Kong L; Yan L; Yang X ACS Appl Mater Interfaces; 2022 Apr; 14(13):15401-15406. PubMed ID: 35316038 [TBL] [Abstract][Full Text] [Related]
20. Near-infrared heavy-metal-free SnSe/ZnSe quantum dots for efficient photoelectrochemical hydrogen generation. Ren S; Wang M; Wang X; Han G; Zhang Y; Zhao H; Vomiero A Nanoscale; 2021 Feb; 13(6):3519-3527. PubMed ID: 33566048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]