These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 37433228)
1. Combining Experiments and Simulations to Examine the Temperature-Dependent Behavior of a Disordered Protein. Pesce F; Lindorff-Larsen K J Phys Chem B; 2023 Jul; 127(28):6277-6286. PubMed ID: 37433228 [TBL] [Abstract][Full Text] [Related]
2. Temperature Dependence of Intrinsically Disordered Proteins in Simulations: What are We Missing? Jephthah S; Staby L; Kragelund BB; Skepö M J Chem Theory Comput; 2019 Apr; 15(4):2672-2683. PubMed ID: 30865820 [TBL] [Abstract][Full Text] [Related]
3. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles. Chan-Yao-Chong M; Durand D; Ha-Duong T J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442 [TBL] [Abstract][Full Text] [Related]
4. Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins. Pesce F; Newcombe EA; Seiffert P; Tranchant EE; Olsen JG; Grace CR; Kragelund BB; Lindorff-Larsen K Biophys J; 2023 Jan; 122(2):310-321. PubMed ID: 36518077 [TBL] [Abstract][Full Text] [Related]
5. Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. Fagerberg E; Lenton S; Nylander T; Seydel T; Skepö M J Phys Chem B; 2022 Feb; 126(4):789-801. PubMed ID: 35044776 [TBL] [Abstract][Full Text] [Related]
6. Computing, Analyzing, and Comparing the Radius of Gyration and Hydrodynamic Radius in Conformational Ensembles of Intrinsically Disordered Proteins. Ahmed MC; Crehuet R; Lindorff-Larsen K Methods Mol Biol; 2020; 2141():429-445. PubMed ID: 32696370 [TBL] [Abstract][Full Text] [Related]
7. Force Field Effects in Simulations of Flexible Peptides with Varying Polyproline II Propensity. Jephthah S; Pesce F; Lindorff-Larsen K; Skepö M J Chem Theory Comput; 2021 Oct; 17(10):6634-6646. PubMed ID: 34524800 [TBL] [Abstract][Full Text] [Related]
8. Deeper Insight of the Conformational Ensemble of Intrinsically Disordered Proteins. Svensson O; Bakker MJ; Skepö M J Chem Inf Model; 2024 Aug; 64(15):6105-6114. PubMed ID: 39056166 [TBL] [Abstract][Full Text] [Related]
9. Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing. Chen SH; Weiss KL; Stanley C; Bhowmik D Protein Sci; 2023 Oct; 32(10):e4772. PubMed ID: 37646172 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities. Tomasso ME; Tarver MJ; Devarajan D; Whitten ST PLoS Comput Biol; 2016 Jan; 12(1):e1004686. PubMed ID: 26727467 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment. Henriques J; Cragnell C; Skepö M J Chem Theory Comput; 2015 Jul; 11(7):3420-31. PubMed ID: 26575776 [TBL] [Abstract][Full Text] [Related]
12. Generating Intrinsically Disordered Protein Conformational Ensembles from a Database of Ramachandran Space Pair Residue Probabilities Using a Markov Chain. Cukier RI J Phys Chem B; 2018 Oct; 122(39):9087-9101. PubMed ID: 30204435 [TBL] [Abstract][Full Text] [Related]
13. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Nygaard M; Kragelund BB; Papaleo E; Lindorff-Larsen K Biophys J; 2017 Aug; 113(3):550-557. PubMed ID: 28793210 [TBL] [Abstract][Full Text] [Related]
14. Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method. Sagar A; Jeffries CM; Petoukhov MV; Svergun DI; Bernadó P J Chem Theory Comput; 2021 Apr; 17(4):2014-2021. PubMed ID: 33725442 [TBL] [Abstract][Full Text] [Related]
16. Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET. Gomes GW; Krzeminski M; Namini A; Martin EW; Mittag T; Head-Gordon T; Forman-Kay JD; Gradinaru CC J Am Chem Soc; 2020 Sep; 142(37):15697-15710. PubMed ID: 32840111 [TBL] [Abstract][Full Text] [Related]
17. SAXS-Restrained Ensemble Simulations of Intrinsically Disordered Proteins with Commitment to the Principle of Maximum Entropy. Hermann MR; Hub JS J Chem Theory Comput; 2019 Sep; 15(9):5103-5115. PubMed ID: 31402649 [TBL] [Abstract][Full Text] [Related]
18. Sequence-Dependent Correlated Segments in the Intrinsically Disordered Region of ChiZ. Hicks A; Escobar CA; Cross TA; Zhou HX Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32585849 [TBL] [Abstract][Full Text] [Related]
19. The Effects of Chain Length on the Structural Properties of Intrinsically Disordered Proteins in Concentrated Solutions. Fagerberg E; Månsson LK; Lenton S; Skepö M J Phys Chem B; 2020 Dec; 124(52):11843-11853. PubMed ID: 33337879 [TBL] [Abstract][Full Text] [Related]
20. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions. Cragnell C; Rieloff E; Skepö M J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]