These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37433255)
1. Rapid separation and detection of Listeria monocytogenes with the combination of phage tail fiber protein and vancomycin-magnetic nanozyme. Pan X; Shi D; Fu Z; Shi H Food Chem; 2023 Dec; 428():136774. PubMed ID: 37433255 [TBL] [Abstract][Full Text] [Related]
2. Smartphone-assisted biosensor based on broom-like bacteria-specific magnetic enrichment platform for colorimetric detection of Listeria monocytogenes. Xiao F; Li W; Wang Z; Xu Q; Song Y; Huang J; Bai X; Xu H J Hazard Mater; 2023 Oct; 459():132250. PubMed ID: 37567141 [TBL] [Abstract][Full Text] [Related]
3. Nanozyme-catalyzed and zwitterion-modified swabs based for the detection of Listeria monocytogenes in complex matrices. Chen W; Peng X; Wei Y; Dong S; Zhang J; Zhao Y; Sun F Talanta; 2024 Dec; 280():126777. PubMed ID: 39191104 [TBL] [Abstract][Full Text] [Related]
4. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Zhang L; Huang R; Liu W; Liu H; Zhou X; Xing D Biosens Bioelectron; 2016 Dec; 86():1-7. PubMed ID: 27318103 [TBL] [Abstract][Full Text] [Related]
5. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. Shen Y; Gao X; Zhang Y; Chen H; Ye Y; Wu Y J Hazard Mater; 2022 Oct; 439():129582. PubMed ID: 35863223 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric aptasensor for Listeria monocytogenes detection using dual functional Fe Du J; Li Z; Liu K; Guo J; Bai Y Mikrochim Acta; 2024 Aug; 191(8):504. PubMed ID: 39096325 [TBL] [Abstract][Full Text] [Related]
7. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. Ohk SH; Koo OK; Sen T; Yamamoto CM; Bhunia AK J Appl Microbiol; 2010 Sep; 109(3):808-17. PubMed ID: 20337767 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Eissa S; Zourob M Mikrochim Acta; 2020 Aug; 187(9):486. PubMed ID: 32761391 [TBL] [Abstract][Full Text] [Related]
9. POD-like nanozyme constructed from perspective of charge transfer engineering for biosensing of magnetic separation treated Listeria monocytogenes. Li W; Xu X; Song Y; Fan L; Huang J; Yang L; Liu Y; Xu H Food Chem; 2025 Jan; 463(Pt 4):141495. PubMed ID: 39362102 [TBL] [Abstract][Full Text] [Related]
10. Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes. Li F; Li F; Luo D; Lai W; Xiong Y; Xu H Anal Chim Acta; 2018 Aug; 1017():48-56. PubMed ID: 29534795 [TBL] [Abstract][Full Text] [Related]
11. Sandwich fluorometric method for dual-role recognition of Listeria monocytogenes based on antibiotic-affinity strategy and fluorescence quenching effect. Li Y; Chen M; Fan X; Peng J; Pan L; Tu K; Chen Y Anal Chim Acta; 2022 Aug; 1221():340085. PubMed ID: 35934342 [TBL] [Abstract][Full Text] [Related]
12. Portable dual-mode biosensor based on smartphone and glucometer for on-site sensitive detection of Listeria monocytogenes. Bai X; Huang J; Li W; Song Y; Xiao F; Xu Q; Xu H Sci Total Environ; 2023 May; 874():162450. PubMed ID: 36863591 [TBL] [Abstract][Full Text] [Related]
13. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Yang X; Zhou X; Zhu M; Xing D Biosens Bioelectron; 2017 May; 91():238-245. PubMed ID: 28013018 [TBL] [Abstract][Full Text] [Related]
14. Rapid and ultra-sensitive lateral flow assay for pathogens based on multivalent aptamer and magnetic nanozyme. Li X; Li G; Pan Q; Xue F; Wang Z; Peng C Biosens Bioelectron; 2024 Apr; 250():116044. PubMed ID: 38271888 [TBL] [Abstract][Full Text] [Related]
15. Separation and colorimetric detection of Escherichia coli by phage tail fiber protein combined with nano-magnetic beads. Hong B; Li Y; Wang W; Ma Y; Wang J Mikrochim Acta; 2023 May; 190(6):202. PubMed ID: 37145241 [TBL] [Abstract][Full Text] [Related]
16. Isolation of phage-display library-derived scFv antibody specific to Listeria monocytogenes by a novel immobilized method. Nguyen XH; Trinh TL; Vu TB; Le QH; To KA J Appl Microbiol; 2018 Feb; 124(2):591-597. PubMed ID: 29165857 [TBL] [Abstract][Full Text] [Related]
17. Recombinase Polymerase Amplification Combined with Lateral Flow Strip for Listeria monocytogenes Detection in Food. Du XJ; Zang YX; Liu HB; Li P; Wang S J Food Sci; 2018 Apr; 83(4):1041-1047. PubMed ID: 29524216 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Liu Y; Wang J; Song X; Xu K; Chen H; Zhao C; Li J Mikrochim Acta; 2018 Jul; 185(8):360. PubMed ID: 29978265 [TBL] [Abstract][Full Text] [Related]
19. Sensitive Detection of Staphylococcus aureus with Vancomycin-Conjugated Magnetic Beads as Enrichment Carriers Combined with Flow Cytometry. Meng X; Yang G; Li F; Liang T; Lai W; Xu H ACS Appl Mater Interfaces; 2017 Jun; 9(25):21464-21472. PubMed ID: 28590745 [TBL] [Abstract][Full Text] [Related]
20. Mutant and Recombinant Phages Selected from Peters TL; Song Y; Bryan DW; Hudson LK; Denes TG Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]