BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37433362)

  • 1. An ultrasensitive aptasensor for exosomes detection based on biotin-streptavidin and MXenes.
    Wang Z; Zhang Z; Pan H; Chang D
    Anal Biochem; 2023 Sep; 676():115233. PubMed ID: 37433362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes.
    Xu L; Chopdat R; Li D; Al-Jamal KT
    Biosens Bioelectron; 2020 Dec; 169():112576. PubMed ID: 32919211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol.
    Abnous K; Danesh NM; Ramezani M; Emrani AS; Taghdisi SM
    Biosens Bioelectron; 2016 Apr; 78():80-86. PubMed ID: 26599477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus.
    Chen W; Zhang Y; Lai Q; Li Y; Liu Z
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6733-6743. PubMed ID: 36058939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing MicroRNA Detection: Enhanced Biotin-Streptavidin Dual-Mode Phase Imaging Surface Plasmon Resonance Aptasensor.
    Liu H; Wang Y; Huang S; Tai J; Wang X; Dai X; Qiu C; Gu D; Yuan W; Ho HP; Chen J; Shao Y
    Anal Chem; 2024 May; 96(21):8791-8799. PubMed ID: 38742926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorimetric aptasensor based on spherical nucleic acid-induced hybridization chain reaction for sensitive detection of exosomes.
    Li C; Guo L; Sang X; Jiang X; Wang H; Qin P; Huang L
    Talanta; 2023 Jun; 258():124453. PubMed ID: 36924637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA.
    Li F; Wang X; Sun X; Guo Y; Zhao W
    Anal Chim Acta; 2018 Nov; 1033():185-192. PubMed ID: 30172325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Formation of Gold Nanoparticles Decorated Ti
    Zhang H; Wang Z; Wang F; Zhang Y; Wang H; Liu Y
    Anal Chem; 2020 Apr; 92(7):5546-5553. PubMed ID: 32186362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of breast cancer-derived exosomes using the horseradish peroxidase-mimicking DNAzyme as an aptasensor.
    Zhou Y; Xu H; Wang H; Ye BC
    Analyst; 2019 Dec; 145(1):107-114. PubMed ID: 31746830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes.
    Xia Y; Liu M; Wang L; Yan A; He W; Chen M; Lan J; Xu J; Guan L; Chen J
    Biosens Bioelectron; 2017 Jun; 92():8-15. PubMed ID: 28167415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive electrochemical aptasensor for the determination of tumor exosomes based on click chemistry.
    An Y; Jin T; Zhu Y; Zhang F; He P
    Biosens Bioelectron; 2019 Oct; 142():111503. PubMed ID: 31376716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum.
    Dong J; He L; Wang Y; Yu F; Yu S; Liu L; Wang J; Tian Y; Qu L; Han R; Wang Z; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117622. PubMed ID: 31606672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy.
    Zhao T; Chen Q; Wen Y; Bian X; Tao Q; Liu G; Yan J
    Food Chem; 2022 May; 377():132072. PubMed ID: 35008020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin PtNi nanozyme based self-powered photoelectrochemical aptasensor for ultrasensitive chloramphenicol detection.
    Zhu X; Gao L; Tang L; Peng B; Huang H; Wang J; Yu J; Ouyang X; Tan J
    Biosens Bioelectron; 2019 Dec; 146():111756. PubMed ID: 31605990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microporous PdCuB nanotag-based electrochemical aptasensor with Au@CuCl
    Chang L; Wu H; Chen R; Sun X; Yang Y; Huang C; Ding S; Liu C; Cheng W
    J Nanobiotechnology; 2023 Mar; 21(1):86. PubMed ID: 36906540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-modal aptasensor based on a multifunctional acridone derivate for exosomes detection.
    Xia Y; Chen T; Chen W; Chen G; Xu L; Zhang L; Zhang X; Sun W; Lan J; Lin X; Chen J
    Anal Chim Acta; 2022 Jan; 1191():339279. PubMed ID: 35033266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescent detection of platelet derived growth factor-BB based on sandwich label-free aptasensor and biotin-streptavidin strategy.
    Xiluan Y; Kun Z; Yunting Y; Yipi X; Chengyi Z; Xi M; Jie L
    J Immunol Methods; 2022 Jul; 506():113289. PubMed ID: 35644254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive electrochemical aptasensor for SARS-CoV-2 antigen detection based on aptamer-binding induced multiple hairpin assembly signal amplification.
    Xue J; Li Y; Liu J; Zhang Z; Yu R; Huang Y; Li C; Chen A; Qiu J
    Talanta; 2022 Oct; 248():123605. PubMed ID: 35671548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive HRP-Linked Colorimetric Aptasensor for the Detection of Fumonisin B1 in Food based on Dual Biotin-Streptavidin Interaction.
    Tao Z; Zhou Y; Li X; Wang Z
    Biosensors (Basel); 2020 Mar; 10(4):. PubMed ID: 32235423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric Aptasensor Based on Fe₃O₄-Cu
    Long J; Wang F; Zha G; Che K; Luo J; Deng Z
    J Biomed Nanotechnol; 2022 Apr; 18(4):1084-1096. PubMed ID: 35854455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.