These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37433684)

  • 1. Bursting Dynamics Based on the Persistent Na
    Erazo-Toscano R; Fomenko M; Core S; Calabrese RL; Cymbalyuk G
    eNeuro; 2023 Aug; 10(8):. PubMed ID: 37433684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comodulation of h- and Na
    Ellingson PJ; Barnett WH; Kueh D; Vargas A; Calabrese RL; Cymbalyuk GS
    J Neurosci; 2021 Jul; 41(30):6468-6483. PubMed ID: 34103361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the Na+/K+ Pump to Rhythmic Bursting, Explored with Modeling and Dynamic Clamp Analyses.
    Erazo-Toscano RJ; Ellingson PJ; Calabrese RL; Cymbalyuk GS
    J Vis Exp; 2021 May; (171):. PubMed ID: 34028438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic properties of persistent Na
    Yamanishi T; Koizumi H; Navarro MA; Milescu LS; Smith JC
    J Gen Physiol; 2018 Nov; 150(11):1523-1540. PubMed ID: 30301870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.
    Tobin AE; Calabrese RL
    J Neurophysiol; 2005 Dec; 94(6):3938-50. PubMed ID: 16093342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory bursting of phasically firing rat supraoptic neurones in low-Ca2+ medium: Na+ influx, cytosolic Ca2+ and gap junctions.
    Li Z; Hatton GI
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):379-94. PubMed ID: 8910223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistability of bursting rhythms in a half-center oscillator and the protective effects of synaptic inhibition.
    Ellingson PJ; Shams YO; Parker JR; Calabrese RL; Cymbalyuk GS
    Front Cell Neurosci; 2024; 18():1395026. PubMed ID: 39355175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons.
    Olypher A; Cymbalyuk G; Calabrese RL
    J Neurophysiol; 2006 Dec; 96(6):2857-67. PubMed ID: 16943313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons.
    Butera RJ; Rinzel J; Smith JC
    J Neurophysiol; 1999 Jul; 82(1):382-97. PubMed ID: 10400966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15.
    Adams WB
    J Physiol; 1985 Mar; 360():51-68. PubMed ID: 3989723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhythmic bursting in the pre-Bötzinger complex: mechanisms and models.
    Rybak IA; Molkov YI; Jasinski PE; Shevtsova NA; Smith JC
    Prog Brain Res; 2014; 209():1-23. PubMed ID: 24746040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subthreshold persistent sodium current mediates bursting in rat subfornical organ neurones.
    Washburn DL; Anderson JW; Ferguson AV
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):359-71. PubMed ID: 11101646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons.
    Li YX; Bertram R; Rinzel J
    Neuroscience; 1996 Mar; 71(2):397-410. PubMed ID: 9053795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator.
    Parker J; Bondy B; Prilutsky BI; Cymbalyuk G
    J Neurophysiol; 2018 Sep; 120(3):1074-1089. PubMed ID: 29766765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons.
    Tsuruyama K; Hsiao CF; Chandler SH
    J Neurophysiol; 2013 Oct; 110(8):1903-14. PubMed ID: 23883859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.
    Kueh D; Barnett WH; Cymbalyuk GS; Calabrese RL
    Elife; 2016 Sep; 5():. PubMed ID: 27588351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent inward current in Aplysia bursting pace-maker neurones.
    Kramer RH; Zucker RS
    J Physiol; 1985 May; 362():107-30. PubMed ID: 2410597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain.
    Inoue S; Murata K; Tanaka A; Kakuta E; Tanemura S; Hatakeyama S; Nakamura A; Yamamoto C; Hasebe M; Kosakai K; Yoshino M
    J Insect Physiol; 2014 Sep; 68():44-57. PubMed ID: 24995840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia.
    Swandulla D; Lux HD
    J Neurophysiol; 1985 Dec; 54(6):1430-43. PubMed ID: 2418170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.