These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 3743374)

  • 1. Interaction of lucensomycin with cholesterol in membranes: kinetic and structural studies.
    Capuozzo E; Crifo C; Salerno C; Strom R
    Drugs Exp Clin Res; 1986; 12(6-7):619-26. PubMed ID: 3743374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of binding of lucensomycin to natural and artificial membranes.
    Capuozzo E; Salerno C; Strom R; Crifò C
    Eur J Biochem; 1987 Aug; 167(1):59-64. PubMed ID: 3622509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. III. Characterization of spectral parameters.
    Strom R; Blumberg WE; Dale RE; Crifo C
    Biophys J; 1976 Nov; 16(11):1297-314. PubMed ID: 974222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of lucensomycin with membranes: the role of non-steroidal components.
    Salerno C; Capuozzo E; Cucco C; Crifo C
    Biochimie; 1989 Jan; 71(1):63-6. PubMed ID: 2497799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. I. A fluorometric and spectrophotometric study.
    Strom R; Crifò C; Bozzi A
    Biophys J; 1973 Jun; 13(6):568-80. PubMed ID: 4736622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMR studies of phosphatidylcholine-cholesterol vesicles interacting with lucensomycin.
    Podo F; Di Blasi R; Crifò C; Strom R
    Physiol Chem Phys; 1979; 11(2):125-33. PubMed ID: 482384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of hemolysis by the polyene antibiotic lucensomycin.
    Strom R; Crifò C; Eusebi F; Sabetta F; Oratore A
    Biochim Biophys Acta; 1976 Dec; 455(3):961-72. PubMed ID: 999947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the polyene antibiotic etruscomycin with large unilamellar lipid vesicles: binding and proton permeability inducement.
    Capuozzo E; Bolard J
    Biochim Biophys Acta; 1985 Oct; 820(1):63-73. PubMed ID: 2996598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. II. Cooperative effects in erythrocyte membranes.
    Strom R; Crifò C; Santoro AS
    Biophys J; 1973 Jun; 13(6):581-93. PubMed ID: 4736623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the polar head structure of polyene macrolide antifungal antibiotics on the mode of permeabilization of ergosterol- and cholesterol-containing lipidic vesicles studied by 31P-NMR.
    Cybulska B; Herve M; Borowski E; Gary-Bobo CM
    Mol Pharmacol; 1986 Mar; 29(3):293-8. PubMed ID: 3951434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects exerted by amphotericin B and lucensomycin on cation permeability in a unilamellar vesicle system.
    Capuozzo E; Salvi S; Salerno C; Crifò C
    Biochimie; 1989 Jan; 71(1):57-61. PubMed ID: 2497798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protoporphyrin IX sensitized photohemolysis: stoichiometry of the reaction and repair by reduced glutathione.
    Strom R; Crifò C; Mari S; Federici G; Mavelli I; Agro AF
    Physiol Chem Phys; 1977; 9(1):63-74. PubMed ID: 909954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative avidity of etruscomycin to cholesterol and ergosterol.
    Nedeau P; Gruda I; Medoff G; Brajtburg J
    Antimicrob Agents Chemother; 1982 Apr; 21(4):545-50. PubMed ID: 7044302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh; Alieva IN; Aliev DI
    Tsitologiia; 2003; 45(8):804-11. PubMed ID: 15216632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Binding of polyenic antibiotics to cell membranes: stechiometry, binding sites, effects on membrane permeability].
    Strom R; Crifò C; Faiola R; Bozzi A; Scioscia Santoro A
    Boll Soc Ital Biol Sper; 1972 Aug; 48(15):412-3. PubMed ID: 4644478
    [No Abstract]   [Full Text] [Related]  

  • 16. The influence of electric charge of aromatic heptaene macrolide antibiotics on their activity on biological and lipidic model membranes.
    Cybulska B; Ziminski T; Borowski E; Gary-Bobo CM
    Mol Pharmacol; 1983 Sep; 24(2):270-6. PubMed ID: 6350845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The mode of action of antifungal agents. Effect of horse erythrocyte membranes on amphotericin B].
    Moulki H; Lematre J; Pierfitte M
    C R Seances Soc Biol Fil; 1976; 170(5):994-8. PubMed ID: 139999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of filipin-cholesterol complexes in rat incisor odontoblasts.
    Goldberg M; Escaig F
    J Biol Buccale; 1984 Jun; 12(2):171-80. PubMed ID: 6590556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.