These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37433791)

  • 1. Multi-batch single-cell comparative atlas construction by deep learning disentanglement.
    Lynch AW; Brown M; Meyer CA
    Nat Commun; 2023 Jul; 14(1):4126. PubMed ID: 37433791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder.
    Wang Z; Zhang Y; Yu Y; Zhang J; Liu Y; Zou Q
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning.
    Lin Y; Wu TY; Wan S; Yang JYH; Wong WH; Wang YXR
    Nat Biotechnol; 2022 May; 40(5):703-710. PubMed ID: 35058621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scDREAMER for atlas-level integration of single-cell datasets using deep generative model paired with adversarial classifier.
    Shree A; Pavan MK; Zafar H
    Nat Commun; 2023 Nov; 14(1):7781. PubMed ID: 38012145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model.
    Duan H; Li F; Shang J; Liu J; Li Y; Liu X
    Interdiscip Sci; 2022 Dec; 14(4):917-928. PubMed ID: 35939233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translator: A
    Xu S; Skarica M; Hwang A; Dai Y; Lee C; Girgenti MJ; Zhang J
    J Comput Biol; 2022 Jul; 29(7):619-633. PubMed ID: 35584295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating single-cell RNA-seq datasets with substantial batch effects.
    Hrovatin K; Moinfar AA; Zappia L; Lapuerta AT; Lengerich B; Kellis M; Theis FJ
    bioRxiv; 2024 Feb; ():. PubMed ID: 37961672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing Data Batch Correction Using Mutual Nearest Neighbors.
    Zou B; Zhang T; Zhou R; Jiang X; Yang H; Jin X; Bai Y
    Front Genet; 2021; 12():708981. PubMed ID: 34447413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ScInfoVAE: interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization.
    Pan W; Long F; Pan J
    BioData Min; 2023 Jun; 16(1):17. PubMed ID: 37301826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep identifiable modeling of single-cell atlases enables zero-shot query of cellular states.
    Dong M; Kluger Y
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependency-aware deep generative models for multitasking analysis of spatial omics data.
    Tian T; Zhang J; Lin X; Wei Z; Hakonarson H
    Nat Methods; 2024 Aug; 21(8):1501-1513. PubMed ID: 38783067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics.
    Seninge L; Anastopoulos I; Ding H; Stuart J
    Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data.
    Zhang Z; Zhao X; Qiu P; Zhang X
    bioRxiv; 2023 May; ():. PubMed ID: 37205545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint trajectory inference for single-cell genomics using deep learning with a mixture prior.
    Du JH; Chen T; Gao M; Wang J
    Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2316256121. PubMed ID: 39226366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile.
    Yang T; Henao R
    PLoS Comput Biol; 2022 Sep; 18(9):e1009921. PubMed ID: 36094959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint analysis of scATAC-seq datasets using epiConv.
    Lin L; Zhang L
    BMC Bioinformatics; 2022 Jul; 23(1):309. PubMed ID: 35906531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bibliometric review of ATAC-Seq and its application in gene expression.
    Luo L; Gribskov M; Wang S
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35255493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.
    Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.