BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37434410)

  • 1. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart.
    Packer M
    Eur J Heart Fail; 2023 Aug; 25(8):1199-1212. PubMed ID: 37434410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD.
    Packer M
    J Am Soc Nephrol; 2023 Sep; 34(9):1480-1491. PubMed ID: 37340541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models.
    Issad T; Al-Mukh H; Bouaboud A; Pagesy P
    J Biomed Sci; 2022 Sep; 29(1):64. PubMed ID: 36058931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Qiliqiangxin: A multifaceted holistic treatment for heart failure or a pharmacological probe for the identification of cardioprotective mechanisms?
    Packer M
    Eur J Heart Fail; 2023 Dec; 25(12):2130-2143. PubMed ID: 37877337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis.
    Packer M
    Circulation; 2022 Nov; 146(18):1383-1405. PubMed ID: 36315602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excessive
    Umapathi P; Mesubi OO; Banerjee PS; Abrol N; Wang Q; Luczak ED; Wu Y; Granger JM; Wei AC; Reyes Gaido OE; Florea L; Talbot CC; Hart GW; Zachara NE; Anderson ME
    Circulation; 2021 Apr; 143(17):1687-1703. PubMed ID: 33593071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine-tuning the cardiac O-GlcNAcylation regulatory enzymes governs the functional and structural phenotype of the diabetic heart.
    Prakoso D; Lim SY; Erickson JR; Wallace RS; Lees JG; Tate M; Kiriazis H; Donner DG; Henstridge DC; Davey JR; Qian H; Deo M; Parry LJ; Davidoff AJ; Gregorevic P; Chatham JC; De Blasio MJ; Ritchie RH
    Cardiovasc Res; 2022 Jan; 118(1):212-225. PubMed ID: 33576380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation.
    Sunden M; Upadhyay D; Banerjee R; Sipari N; Fellman V; Kallijärvi J; Purhonen J
    Cell Rep Methods; 2023 Jul; 3(7):100518. PubMed ID: 37533645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).
    Bullen JW; Balsbaugh JL; Chanda D; Shabanowitz J; Hunt DF; Neumann D; Hart GW
    J Biol Chem; 2014 Apr; 289(15):10592-10606. PubMed ID: 24563466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross regulation between mTOR signaling and O-GlcNAcylation.
    Very N; Steenackers A; Dubuquoy C; Vermuse J; Dubuquoy L; Lefebvre T; El Yazidi-Belkoura I
    J Bioenerg Biomembr; 2018 Jun; 50(3):213-222. PubMed ID: 29524020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity.
    Narayanan B; Sinha P; Henry R; Reeves RA; Paolocci N; Kohr MJ; Zachara NE
    J Biol Chem; 2023 Dec; 299(12):105447. PubMed ID: 37949223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real Talk: The Inter-play Between the mTOR, AMPK, and Hexosamine Biosynthetic Pathways in Cell Signaling.
    Cork GK; Thompson J; Slawson C
    Front Endocrinol (Lausanne); 2018; 9():522. PubMed ID: 30237786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cardiac O-GlcNAcylation: More than just nutrient availability.
    Collins HE; Chatham JC
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165712. PubMed ID: 32014551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. O-GlcNAcylation is a gatekeeper of porcine myogenesis.
    Kirkpatrick LT; Daughtry MR; El-Kadi S; Shi TH; Gerrard DE
    J Anim Sci; 2022 Nov; 100(11):. PubMed ID: 36219104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The O-GlcNAc dichotomy: when does adaptation become pathological?
    Costa TJ; Wilson EW; Fontes MT; Pernomian L; Tostes RC; Wenceslau CF; McCarthy CG
    Clin Sci (Lond); 2023 Nov; 137(22):1683-1697. PubMed ID: 37986614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance.
    Packer M
    Circulation; 2020 Jun; 141(25):2095-2105. PubMed ID: 32164457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic O-GlcNAcylation and Diabetic Cardiomyopathy: The Bitterness of Glucose.
    Ducheix S; Magré J; Cariou B; Prieur X
    Front Endocrinol (Lausanne); 2018; 9():642. PubMed ID: 30420836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.
    Lunde IG; Aronsen JM; Kvaløy H; Qvigstad E; Sjaastad I; Tønnessen T; Christensen G; Grønning-Wang LM; Carlson CR
    Physiol Genomics; 2012 Feb; 44(2):162-72. PubMed ID: 22128088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback Regulation of
    Lin CH; Liao CC; Chen MY; Chou TY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs.
    Packer M
    Cardiovasc Diabetol; 2020 May; 19(1):62. PubMed ID: 32404204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.