These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37435309)

  • 1. An anatomically detailed arterial-venous network model. Cerebral and coronary circulation.
    Müller LO; Watanabe SM; Toro EF; Feijóo RA; Blanco PJ
    Front Physiol; 2023; 14():1162391. PubMed ID: 37435309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation.
    Mynard JP; Smolich JJ
    Ann Biomed Eng; 2015 Jun; 43(6):1443-60. PubMed ID: 25832485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications.
    Blanco PJ; Feijóo RA
    Med Eng Phys; 2013 May; 35(5):652-67. PubMed ID: 22902782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global multiscale mathematical model for the human circulation with emphasis on the venous system.
    Müller LO; Toro EF
    Int J Numer Method Biomed Eng; 2014 Jul; 30(7):681-725. PubMed ID: 24431098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods and applications.
    Toro EF; Celant M; Zhang Q; Contarino C; Agarwal N; Linninger A; Müller LO
    Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3532. PubMed ID: 34569188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of anatomical dominance and hypertension on coronary conduit arterial and microcirculatory flow patterns: a multiscale modeling study.
    Mynard JP; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H11-23. PubMed ID: 27199135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow.
    Kim HJ; Jansen KE; Taylor CA
    Ann Biomed Eng; 2010 Jul; 38(7):2314-30. PubMed ID: 20352333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Closed-Loop Modeling Framework for Cardiac-to-Coronary Coupling.
    Munneke AG; Lumens J; Arts T; Delhaas T
    Front Physiol; 2022; 13():830925. PubMed ID: 35295571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex.
    Hartung G; Vesel C; Morley R; Alaraj A; Sled J; Kleinfeld D; Linninger A
    PLoS Comput Biol; 2018 Nov; 14(11):e1006549. PubMed ID: 30452440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures.
    Liu X; Gao Z; Xiong H; Ghista D; Ren L; Zhang H; Wu W; Huang W; Hau WK
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1439-1456. PubMed ID: 26935302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomically based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels.
    Burrowes KS; Hunter PJ; Tawhai MH
    J Appl Physiol (1985); 2005 Aug; 99(2):731-8. PubMed ID: 15802366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system.
    Martin BA; Reymond P; Novy J; Balédent O; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2012 Apr; 302(7):H1492-509. PubMed ID: 22268106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms.
    Blanco PJ; Watanabe SM; Dari EA; Passos MA; Feijóo RA
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1303-30. PubMed ID: 24682727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DCS or DCI? The difference and why it matters.
    Mitchell SJ
    Diving Hyperb Med; 2019 Sep; 49(3):152-153. PubMed ID: 31523788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical synthesis of the cortical circulation for the whole mouse brain-part II: Microcirculatory closure.
    Hartung G; Badr S; Mihelic S; Dunn A; Cheng X; Kura S; Boas DA; Kleinfeld D; Alaraj A; Linninger AA
    Microcirculation; 2021 Jul; 28(5):e12687. PubMed ID: 33615601
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.